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Introduction I

Hydrologic processes can be partly explained by deterministic models, however some processes are
not still well understood and shall be chracterized through statistical models. Statistical models
explain hydrologic processes based on their historical observations.

A random variable can be explained with a probability distribution, which is a parametric function
that characterizes the probability of occurrence of that variable.

Random variable:

A random variable (X) is a variable whose possible values are outcomes of a random process.

There are two types of random variables:

a) A discrete random variable, which only takes countable number of values.

b) A continuous random variable that takes infinite number of possible values.

• A finit set of observations x1, x2, . . . , xn of a random variable is called a sample set.
• The space that all samples can be drawn is called the sample space.
• A subset of the sample space is called an event.

For example Ω = {x |x = 0, 1, 2, ......., 10} can respresent a sample space, where
Ax = {x |1 ≤ x ≤ 6} is an event.

The box in the right hand side has three oranges
(o) and two blue (b) discs as the entire sample
space.
p(b) = 2

5

p(o) = 3
5 , where p(o) + p(b) = 1
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Introduction II
• Total probability:

p(A1) + p(A2) + . . . p(An) = p(Ω) = 1

where A1,. . . ,An are disjoint events.

A1

A2

A3

A5 A6

A4
A

A

• Complementarity:
p(A) = 1− p(Ω− A) = 1− p(Ā) Ā : compliment of A

A1

A2

A3

A5 A6

A4
A

A

• Conditional Probability: Suppose we have two events A and B, the conditional probability
p(A|B) refers to the probability of the event A given that the event B has already occurred

p(A|B) =
p(A ∩ B)

p(B)
,

Statistical Hydrology Ardeshir Ebtehaj 2



Introduction III
where p(A ∩ B) is the joint probability, which is shown with a solid hatch in the following sample
space.

AB

If two events are independent, we have,

p(A|B) = p(A) =
p(A ∩ B)

p(B)

and thus p(A ∩ B) = p(A).p(B).

• Marginal probability: The marginal probability of an event is a probability that does not account
for probability of occurence of other dependent random variables. For example, if p(A∩ B) 6= ∅ is
not empty, then the marginal distribution of p(A) is p(A) =

∑
B

p(A ∩ B).

For example, if we assume that values of total annual precipitation amounts are independent
random variables (X) and p(X ≤ 40′′) = a, then p(X1 ≤ 40” ∩ X2 ≤ 40”) = a2, because these
two events are assumed to be independent.

Moreover, if p(X < 35”) = 0.333 and p(X > 45”) = 0.275, then the complement probability is
p(35 ≤ X ≤ 45) = 1− 0.333− 0.275 = 0.392.
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Introduction IV
Frequency histograms vs probability distributions:

If we have a finite number of n independent and identically distributed samples of X , we can first
determine the range of the random numbers and then divide it into discrete intervals with a size
of ∆x . Then we can count the number of values (ni ) that fall within [xi , xi + ∆x ] and divide it by
the total number of samples (n) to obtain the frequency of occurrence within each interval.

fs (xi ≤ X ≤ xi + ∆x) '
ni

n

f s  (x)

x

f x (x)

xxi xi+1Δx

Δx     0

f s  (x) f x (x)

Figure 1: Probability histogram of discrete random numbers (left) versus probability density
function of continuous random variables (right).
As ∆x → 0 , we can say that the histogram approaches to the probability distribution function
(PDF) fX (x), in which the probability of an interval is

pr (xi ≤ X ≤ xi + ∆x) =

∫ xi +∆x

xi

fX (u)du.

Note that fs (.) is the frequency function and fX (.) refers to the probability density function (PDF).
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Introduction V
f s  (x)

x

f x (x)

x

Fs  (x)

x

Fx (x)

x

xi xi

Fs  (xi)

Fx (xi)

Figure 2: Cumulative frequency (left) and cumulative density functions (CDF) (right).
Clearly, we can define some of the frequency and probability density functions as follows to obtain
the cumulative frequency and density functions,

Fs (xi ) =
i∑

j=1

fs (xj )⇒ cumulative frequency function

FX (xi ) =

∫ xi

−∞

fX (u)du ⇒ cumulative density function.
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Introduction VI
As a result, we can have,

prob(xi ≤ X ≤ xi + ∆x) = FX (xi + ∆x)− FX (xi ) =

∫ xi +∆x

−∞

fX (u)du −

∫ xi

−∞

fX (u)du

Moments of probability distributions:

Moments of a probability distribution are statistical parameters that can be used to extract
essential information about the position and shape of a probability distribution.

First-order moment of fX (x):

µ = E(x) =

∫ ∞
−∞

x fX (x)dx

Second-order central moment of fX (x):

σ
2 = E(x − µ)2 =

∫ ∞
−∞

(x − µ)2 fX (x)dx

Third-order central moment of fX (x):

γ = E(x − µ)3 =

∫ ∞
−∞

(x − µ)3fX (x)dx

A percentile of a distribution is a statistic that indicates the value below which a given percentage
of the probability mass falls. For example, the 95th percentile is the value below which 95% of
the probability mass of A distribution is located.
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Introduction VII
f x (x)

xμ

σ

γ>0 γ<0

Figure 3: Mean (µ) of a PDF is a measure of its central tendency or location. Standard deviation
(σ) is a measure of width or dispersion of the random variable around its mean. Densities with
larger standard deviation are wider than those with smaller standard deviations. The third order
central moment (γ) is a measure of symmetry or skewness of the random variable. The densities
with γ > 0 are positively skewed and those with γ < 0 are negatively skewed.
As an example,

µ = x̄ = E(x) = 1 × 0.3 + 2 × 0.5 + 3 × 0.2 = 1.9 =
∑3

i=1
xi fs (xi )

σ2 = E(x−µ)2 = (1− 1.9)2× 0.3 + (2− 1.9)2× 0.5 + (3− 1.9)2× 0.2 =
0.81 × 0.3 + 0.01 × 0.5 + 1.21 × 0.2 = 0.49

γ = E(x−µ)3 = (1−1.9)3×0.3+(2−1.9)3×0.5+(3−1.9)3×0.2 = 0.048

f s  (x)

x1 2 3

0.3

0.5

0.2
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Introduction VIII
We often normalize or rescale the statistical moments to make them more meaningful.

Coefficient of variation:
CV =

σ

µ

Coefficient of skewness:

Cs =
E(x − µ)3

σ3

Note: When sample size is small, discrete approximation of the moments may be biased. To
obtain unbiased estimates, the following formulas shall be used:

σ2
x = 1

n−1

∑n
i=1

(xi − µ)2

Cs =
n
∑n

i=1
(xi−µ)3

(n−1)(n−2)σ3
s

, where Cs < 0 (negative skewness) Cs > 0 (positive skewness).

In the above unbiased sample statistics µ =
(∑n

i=1
xi
)
/n.
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Common PDFs in Hydrology I

Normal Distribution:

fX (x) =
1

√
2πσ

exp(
−(x − µ)2

2σ2 )

Fx (x) =

∫ x

−∞

fX (u)du

Figure 4: PDF (left) and CDF (right) of the Gaussian or Normal distribution.

E(x) = µ

E(x − µ)2 = σ2

E(x − µ)3 = 0 and E(x − µ)4 = 3σ4
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Common PDFs in Hydrology II

Figure 5: Distribution of the probability mass of a normal distribution based on different values of
its standard deviation.

If we define the standard normal variable as z = x−µ
σ , which is often called z-score, the

distribution of z will have zero mean and a standard deviation equal to one. This distribution is
called the standard normal distribution and has the following analytical form:

fz (z) =
1
√

2π
exp(
−z2

2
)

The cumulative distribution function (CDF) of the standard normal is:
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Common PDFs in Hydrology III

Φz (z) =

∫ z

−∞

1
√

2π
e
−u2

2 du

In statistics, one often uses the so-called error function as follows:

erf (x) =
1
√
π

∫ x

−x

e−u2
du =

2
√
π

∫ x

0

e−u2
du

where, the complementary error function is defines as,

erfc(x) = 1− erf (x) =
2
√
π

∫ ∞
x

e−u2
du

The values of the error function for different input values are given in the following table and can
be obtained in MATALB using erf(x) function.

Figure 6: Values of the error function.
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Common PDFs in Hydrology IV
We can use the error function to compute the cumulative distribution function of the standard
normal density function Φz (z) as follows:

Φz (z) = 1√
2π

∫ z

−∞
e
−u2

2 du, erf (z) = 2√
π

∫ z

0
e−u2

du

If we do a change of variable as u = t√
2

and thus du = dt√
2

, we have u = 0⇒ t = 0 and
u = z ⇒ t =

√
2z. Applying this change of variable to the error function, we gey

erf (z) =
2
√
π

∫ √2z

0

e
−t2

2
dt
√

2
=

2
√

2π

∫ √2z

0

e
−t2

2 dt

= 2
(

1
√

2π

∫ √2z

−∞

e
−t2

2 dt −
1
√

2π

∫ 0

−∞

e
−t2

2 dt
)

As thus,

erf (z) = 2
(

Φ(
√

2z)− φ(0)
)

= 2
(

Φ(
√

2z)−
1
2

)
which results in,

Φz (
√

2z) =
1 + erf (z)

2
.

By another change of variable, we get
z →

z
√

2
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Common PDFs in Hydrology V

Φz (z) =
1 + erf ( z√

2
)

2

Therefore if x ∼ N (µ, σ) and we are interested to compute FX (x) = pr (X ≤ x), we should
follow the following steps:

z =
x − µ
σ

⇒ pr (X ≤ x) = Φz (z) =
1 + erf ( z√

2
)

2
MATLAB: normcdf(x,µ,σ)

Example: Assume that X is from a normal distribution with µ = 2 and σ = 3, what is the
probability of pr (2.5 ≤ x ≤ 5)=?

x = 2.5⇒ z = 2.5−2
3 = 0.167

x = 5⇒ z = 5−2
3 = 1⇒ pr (0.167 ≤ z ≤ 1) = Φ(1)− Φ(0.167)

Φ(1) =
1+erf ( 1√

2
)

2 = 0.8413

Φ(0.167) =
1+erf ( 0.167√

2
)

2 = 0.5663

pr (0.167 ≤ z ≤ 1) = Φ(1)− Φ(0.167) ' 0.2752
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Common PDFs in Hydrology VI
Log-normal Distribution:

Hydrologic variables are often skewed. A logarithm transformation often makes them more
symmetric and allows a more robust estimation of their statistics. If a random variable Y=log X is
normally distributed, then X has a log-normal distribution.

fX (x) =
1

xσ
√

2π
exp
(
−

(y − µy )2

2σ2
y

)
x > 0

where µy and σy are the mean and standard deviation of Y .

Figure 7: The PDF (left) and CDF (right) of the log-normal density function.
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Common PDFs in Hydrology VII
Exponential distribution:

Some hydrologic process, such as the occurrence time between precipitation events can be
explained by the an exponential distribution, which has the following expressions:

fX (x) = λe−λx x ≥ 0 λ > 0

FX (x) = 1− e−λx

µx =
1
λ

σ
2
x =

1
λ2 .

Figure 8: The PDF (left) and CDF (right) of an exponential density function.
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Common PDFs in Hydrology VIII
Gamma distribution: A two parameter Gamma distribution is defined as follows:

fX (x) =
λβxβ−1e−λx

Γ(β)
for x ≥ 0 and λ, β > 0

where λ is a width parameter and β catheterizes the shape. The following relationship holds
between the parameters and the first and second order moments.

λ =
µx

σ2
x

and β =
µ2

x
σ2

x.

The gamma function for positive integers and real numbers are Γ(α) = (α− 1)! and
Γ(α) =

∫∞
0

xα−1e−x dx , respectively.

Figure 9: The PDF (left) and CDF (right) of the gamma density function.
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Common PDFs in Hydrology IX
Gumbel distribution:

f (x , β) =
1
β

exp
[
−

x − u
β
− exp(−

x − u
β

)
]

−∞ < x <∞

u ' µ− 0.5772β, β =
√

6σx

π
.

where µ and σx are the mean and standard deviation of x .

Figure 10: The PDF (left) and CDF (right) of the Gumbel distribution.
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Common PDFs in Hydrology X
Pearson Type III:

This density is a three parameter gamma density function that has an extra location parameter ε.

fX (x) =
λβ(x − ε)β−1e−λ(x−ε)

Γ(β)
x ≥ ε

λ =
σx√
β
, β =

(
2

Cs

)2
, ε = µ− σx

√
β.

µx : mean of x

σx : standard deviation of x

Cs : skewness coefficient of x .

Log Pearson Type III:

fX (x) =
λβ(y − ε)β−1e−λ(y−ε)

xΓ(β)
; log x ≥ ε

λ =
σy√
β

; β =
(

2
Cs (y)

)2
; ε = µy − σy

√
β
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Fitting a probability distribution I

Method of Moments:

When we have a set of random samples, we are often interested to obtain a parametric
representation for the distribution of those random numbers. To obtain that parametric
representation, we first need to choose a PDF and then estimate its parameters such that the
density represents well the observed samples. To that end, we can simply compute the sample
statistics of the distribution and use them to estimate the parameters.

x̄ =
Σxi

n
σ

2
x =

1
n − 1

Σi (xi − x̄)2 Cs =
n
∑n

i=1
(xi − x̄)3

(n − 1)(n − 2)σ3
x

For example for normal and exponential distribution we have:

fX (x) =
1

√
2πσx

exp(−
(x − x̄)2

2σ2
x

) normal distribution

fX (x) = λe−λx
λ =

1
x̄

Example: Assume that xi ={2.4, 4.25, 0.77, 13.22, 3.55, 1.37} are drawn from an exponential
density function. What is the best estimate of the λ parameter based on the method of moment?

x̄ =
2.4 + 4.25 + 0.77 + 13.22 + 3.55 + 1.37

6
= 4.28

λ = 1
x̄ = 0.234 and thus fX (x) = 0.234 e−0.234x .

However, the question is, how can we choose the best probability density function? In other
words, we need a goodness of fit test to differentiate between different candidate PDFs and
understand what is the best representative density function.
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Fitting a probability distribution II
Chi-Squared test:

Let’s assume that we have a set of n samples {xj}n
j=1 that are drawn from an unknown PDF. We

can divide the observation domain into a set of intervals [xi−1, xi ], and compute the frequency of
occurrence of xi as follows fs (xi ) = ni

n , where

n: is the total number of observations and

ni : is the number of observations that fall with [xi−1, xi ].

For a chosen probability model fX (x), we have f (xi ) = FX (xi )− FX (xi−1) where FX (.) is the
CDF function of the chosen probability model. If we assume that our histogram has m intervals,
one may compute the following statistic that represents the deviation between the observed
frequency of occurrence nfs (xi ) and expected ones nfX (xi ),

χ
2
κ =

m∑
i=1

[nfs (xi )− nf (xi )]2

nf (xi )
=

m∑
i=1

n[fs (xi )− f (xi )]2

f (xi )

If we assume that the error ei = f (xi )− p(xi ) is normally distributed then χ2
κ has a chi-squared

distribution with degree of freedom κ = m − p − 1, where m is the number of intervals and p
denotes the number fitted parameters for the chosen distribution.

Chi-squared distribution has the following density function:

fκ(x) =
1

2κ/2Γ(κ2 )
x
κ
2 −1e−

x
2

µ = κ σ
2
X = 2κ Cs =

√
8
κ
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Fitting a probability distribution III

Figure 11: The PDF (left) and CDF (right) of the Chi-Squared distribution.

Example: We have a record of 69 years of annual precipitation data (inches) with the sample
mean and standard deviation x = 39.77 [in] and σ = 9.17 [in]. We have the null hypothesis that
these annual precipitation data are not drawn from a Gaussian Distribution. Use the chi-squared
test to accept or reject the null hypothesis.

Year 1910 1920 1930 1940 1950 1960 1970
0 48.7 44.8 49.3 31.2 46.0 33.9
1 39.9 44.1 34.0 44.2 27.0 44.3 31.7
2 31.0 42.8 45.6 41.7 37.0 37.8 31.5
3 42.3 48.4 37.3 30.8 46.8 29.6 59.6
4 42.1 34.2 43.7 53.6 26.9 35.1 50.5
5 41.1 32.4 41.8 34.5 25.4 49.7 38.6
6 28.7 46.4 41.1 50.3 23.0 36.6 43.4
7 16.8 38.9 31.2 43.8 56.5 32.5 28.7
8 34.1 37.3 35.2 21.6 43.4 61.7 32.0
9 56.4 50.6 35.1 47.1 41.3 47.4 51.8
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Fitting a probability distribution IV
Interval (i) Range (i) ni fs (xi ) Fs (xi ) zi F (X < xi ) f (xi ) χ2

κ

1 < 20 1 0.014 0.014 -2.157 0.015 0.015 0.004
2 20-25 2 0.029 0.043 -1.611 0.053 0.038 0.147
3 25-30 6 0.087 0.130 -1.065 0.144 0.090 0.008
4 30-35 14 0.203 0.333 -0.520 0.301 0.158 0.891
5 35-40 11 0.159 0.493 0.026 0.510 0.209 0.805
6 40-45 16 0.232 0.725 0.571 0.716 0.206 0.222
7 45-50 10 0.145 0.87 1.117 0.868 0.151 0.019
8 50-55 5 0.072 0.942 1.662 0.952 0.084 0.114
9 55-60 3 0.043 0.982 2.208 0.986 0.034 0.163

10 > 60 1 0.014 1.00 2.753 1.000 0.014 0.004
Total 69 1.00 2.377

For example in the above table, for the 4th interval, we have

fs (x4) = 14
69 = 0.203

Fs (x4) = 0.014 + 0.029 + 0.087 + 0.203 = 0.333

Let’s fit a Gaussian distribution with the following statistics:
x̄ = 39.77′′ σ = 9.17′′

Having the above parameters for a Gaussian density, we can compute the probabilities of the third
and forth intervals as follows:

i = 4⇒ z4 = X−µ
σ = 35−39.77

9.17 = −0.52

1+erf ( z4√
2

)

2 = φz (z4 = −0.52) = F (X4 = 35) = 0.301
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Fitting a probability distribution V
i = 3⇒ z3 = 30−39.77

9.17 = −1.065

φz (z3 = −1.065) = F (X3 = 30) = 0.144

f (x4) = F (x4)− F (x3) = 0.158

And in the last column for i = 4, we have, n[fs (x4)−f (x4)]2
f (x4) = 0.81 and the sum for all intervals is

χ2
κ =
∑m

i=1
n[fs (xi )−f (xi )]2

f (xi ) = 2.377, where, m = 10, p = 2 and the degree of freedom
κ = m − p − 1 = 7. The chi-squared statistic for significance level α = 0.95 can be computed
from available tables (e.g., https://www.medcalc.org/manual/chi-square-table.php) or
existing software tools. In the problem at hand xα=0.95 = 14.1 for κ = 7.

Note: if you have access to a computer program that can automatically compute F (xi ),
given the mean (29.77 in) and standard deviation (σ=9.17 in.) of the fitted normal
distribution, you don’t need to compute zi . In MATLAB f (xi ) = F (xi ) − F (xi−1) =
normcdf (xi , µ, σ)− normcdf (xi−1, µ, σ), where µ = 29.77 [in] and σ = 9.17 [in] in the
above example. Moreover the inverse of the Chi-Squared distribution can be obtained
using the following command in MATLAB.

xα = 14.1 = ch2inv(0.95,7)

In Excel the command is as follows:
14.1 = chinve(0.95,7)

In MATLAB, the above Chi-squared test can be done with h = chi2gof(x) in which for
h = 0, we can reject the null hypothesis and assume that samples are drawn form the
Gaussian density with significance level 95%.
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Fitting a probability distribution VI
Here, the null hypothesis is that the samples are not drawn from the normal distribution. We
have to check whether the hypothesis can be accepted or shall be rejected. It is important to note
the null hypothesis is often referred to the case that there is no relationship between two
measured phenomena, or no association exists between the sampled random variables and the
chosen probability distribution.

f κ (x)

x

Fκ (x)

x

xα

α=0.95
1

α:  significance level

xα=F-1(α)

Reject the null hypothesis
X 2

k

Accept the null hypothesis
X 2

k

f X (x)

x

FX (x)

x

xT

(1-p)
1

xT=F-1(1-p)

fX(X>xT)=p
(1-p)

Figure 12: A schematic showing the Chi-Squared test for significance level α = 0.95. When
χ2
κ ≤ xα, it is likely that the computed statistic is drawn from a chi-squared density. Thus, with

significance level α = 0.95, the samples are drawn from a Gaussian distribution and we can reject
the null hypothesis. However, when χ2

κ > xα, the computed statistics may not belong the
chi-squared density and thus it is very likely that the samples are not drawn for the Gaussian
density. Thus we can accept the null hypothesis with significance level α = 0.95.
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Frequency Analysis I

Frequency analysis in hydrology is for explaining extreme hydrologic events that can not be
properly described via physical modeling. It is important to note that when we fit a probability
density function to a finite number of samples, we assume that those samples are independent
and identically distributed (i.i.d). For example, two samples of streamflow rate from today and
tomorrow can be considered as two samples from the same distribution but it is very likely that
they are not independent. However, for example maximum annual streamflow rates can be
considered as independent random variables.

Extreme events: An extreme event is an event that has very low probability of occurrence and a
long return period.

x

x

xα

α:  significance level

=F-1(α)

Accept the null hypothesis

f X (x)

x

FX (x)

x

xT

(1-p)
1

xT=F-1(1-p)

fX(X>xT)=p
(1-p)

Figure 13: The extreme value xT and return period T of an extreme event can be inferred from
probability distribution of independent and identically distributed annual maxima of the event
(e.g., streamflows) or block maxima of other variables of interest. Note that xT is the
100(1− p)th percentile of fX (x), where p denotes the probability of exceedance.
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Frequency Analysis II
The following table represents the annual daily maximum discharge in cfs of a river station for
almost five decades.

Year 1930 1940 1950 1960 1970
0 55900 13300 23700 9190
1 58000 12300 55800 9740
2 56000 28400 10800 58500
3 7710 11600 4100 33100
4 12300 8560 5720 25200
5 38500 22000 4950 15000 30200
6 179000 17900 1730 9790 14100
7 17200 46000 25300 70000 54500
8 25400 6970 58300 44300 12700
9 4940 26600 10100 15200

For example assuming xT =50,000 cfs, we can see that nine times the maximum annual flow
exceeds this extreme event with the following recurrence intervals:

t1 = 4, t2 = 1, t3 = 1, t4 = 16, t5 = 3, t6 = 6, t7 = 5, t8 = 5 yr

Therefore, the return period is T = E(t) = Σti/n = 41
8 = 5.125 year.

Let us assume that the probability of exceedance of an extreme event is denoted by p. If an
extreme event occurs after t years, it means that there were t − 1 years without any extreme
event.Therefore, the probability distribution of the return period maybe explained by a specific
form of the binomial distribution as follows:

pT (t) = (1− p)t−1p.
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Frequency Analysis III
The expected values of t or the return period can be calculated as

T = E(t) =
∞∑
t=1

t(1− p)t−1p

= p + 2(1− p)p + 3(1− p)2p + 4(1− p)3p + . . .

= p [1 + 2(1− p) + 3(1− p)2 + 4(1− p)3 + . . .]

=
p

[1− (1− p)]2 =
1
p

Therefore, T = E(t) = 1
p , and thus the return period is equal to the inverse of the probability of

exceedence of xT ,
1
T

= 1− F (xT ) = p and thus xT = F−1(1− p).

Example: For an xT = 50000 [cfs], the return period can be obtained as T = E(t) = 5.1 yr,
which results in p = 1

T = 0.195.

Question: What is the probability that a T -year return period event will occur at least
once in N years?

Pr (X < xT for N consecutive years) = (1− p)(1− p) . . . = (1− p)N

Pr (X ≥ xT at least once in N years) = 1− (1− p)N = 1− (1−
1
T

)N
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Frequency Analysis IV
Example: Estimate the probability that annual maximum discharge Q will exceed 50000 cfs at
least once during the next 5 years.

p = 1
T = 1

5.1 = 0.195

p(Q ≥ 50000) cfs at least once in the next five years =1− (1− 0.195)5 ' 0.66.

Extreme Value Distributions:

Two classes of distributions are commonly used in hydrologic extreme value analyses:

(1) Extreme value type I,II,III

(2) Log-Pearson Type III

Extreme value type I or the Gumbel distribution is often used for rainfall frequency analysis as
follows:

fX (x) =
1
β

exp[−
x − u
β
− exp(−

x − u
β

)] −∞ < u <∞

u = µ− 0.5772β

β =
√

6σx

π

FX (x) = exp[−exp(−
x − u
β

)] −∞ < u <∞

if we define a reduced variable as
y =

x − u
β

,
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Frequency Analysis V
we have:

F (X) = exp[−exp(−y)]⇒ y = − ln [ln(
1

FX (x)
)] (1),

we showed that,

1
T

= p =

∫ ∞
xT

fX (x)dx = 1−

∫ xT

∞

fX (x)dx

= 1− F (xT )⇒ F (xT ) =
T − 1

T
, (2)

from (1) & (2) we have,

yT = − ln [ln(
T

T − 1
)]

xT = u + βyT .

Therefore, given the return period T , we can compute yT and knowing the distribution
parameters from the method of moment, we can obtain the associated extreme event xT .
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Frequency Analysis VI
Example: Annual maximum value of 10-minute-duration rainfall in a specific location is presented
below. Calculate the 10-minute-duration maximum rainfall for 5- and 10-year return period.

Year 1910 1920 1930 1940
0 0.53 0.33 0.34
1 0.76 0.96 0.70
2 0.57 0.94 0.57
3 0.49 0.80 0.80 0.92
4 0.66 0.66 0.62 0.66
5 0.58 0.68 0.71 0.65
6 0.58 0.68 1.11 0.63
7 0.41 0.61 0.64 0.60
8 0.47 0.88 0.52
9 0.74 0.49 0.64

µ = 0.649 σx = 0.177in β =
√

6σx
π = 0.138

u = µ− 0.5772β = 0.569

yT = − ln [ln( T
T−1 )]

yT = − ln [ln( 5
4 )] = 1.5

xT = u + βyT = 0.569 + 0.138× 1.50 = 0.78′′
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Frequency Analysis VII
Log-Pearson Type III is used for flood frequency in the United States. Recall that as the Gumbel
distribution was invertible, we have closed form expression for its percentile and thus could find an
analytical expression for the extreme values of annual rainfall maxima (xT for return period T as
follows:

f (X ≥ xT ) = p ⇒ F−1
X (1− p) = xT

However, the CDF of many distributions is not invertible. For computational convenience, we use
a frequency factor KT and express the percentile of the distribution for return period T as follows:

xT = µx + KTσx ,

where µx and σx are the mean and standard deviation of the random variable x . When the
random variable has significant positive skewness, we take y = log x and then we have

yT = µy + KTσy .

Finding yT , then one can obtain xT =10yT . For complex distributions such as the log-Pearson
type III, the relationship between KT and T is given in some pre-calculated tables for the
log-transformed variable. In the tables shown in the following slides, the frequency factor KT is
given for return period T = 2, 5, 10, 25, 50, 100, 200 yrs as a function of the sample skewness
coefficient of the data (Cs ) in the logarithm scale.
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Frequency Analysis VIII
KT values for Pearson Type III distribution (positive skew)

Return period in years
2 5 10 25 50 100 200

Skew Coefficient Cs or Cw
Exceedence Probability

0.50 0.20 0.10 0.04 0.02 0.01 0.005
3.0 -0.396 0.420 1.180 2.278 3.152 4.051 4.970
2.9 -0.390 0.440 1.195 2.277 3.134 4.013 4.909
2.8 -0.384 0.460 1.210 2.275 3.114 3.973 4.847
2.7 -0.376 0.479 1.224 2.272 3.093 3.932 4.783
2.6 -0.368 0.499 1.238 2.267 3.071 3.889 4.718
2.5 -0.360 0.518 1.250 2.262 3.048 3.845 4.652
2.4 -0.351 0.537 1.262 2.256 3.023 3.800 4.584
2.3 -0.341 0.555 1.274 2.248 2.997 3.753 4.515
2.2 -0.330 0.574 1.284 2.240 2.970 3.705 4.444
2.1 -0.319 0.592 1.294 2.230 2.942 3.656 4.372
2.0 -0.307 0.609 1.302 2.219 2.912 3.605 4.298
1.9 -0.294 0.627 1.310 2.207 2.881 3.553 4.223
1.8 -0.282 0.643 1.318 2.193 2.848 3.499 4.147
1.7 -0.268 0.660 1.324 2.179 2.815 3.444 4.069
1.6 -0.254 0.675 1.329 2.163 2.780 3.388 3.990
1.5 -0.240 0.690 1.333 2.146 2.743 3.330 3.910
1.4 -0.225 0.705 1.337 2.128 2.706 3.271 3.828
1.3 -0.210 0.719 1.339 2.108 2.666 3.211 3.745
1.2 -0.195 0.732 1.340 2.087 2.626 3.149 3.661
1.1 -0.180 0.745 1.341 2.066 2.585 3.087 3.575
1.0 -0.164 0.758 1.340 2.043 2.542 3.022 3.489
0.9 -0.148 0.769 1.339 2.018 2.498 2.957 3.401
0.8 -0.132 0.780 1.336 1.993 2.453 2.891 3.312
0.7 -0.116 0.790 1.333 1.967 2.407 2.824 3.223
0.6 -0.099 0.800 1.328 1.939 2.359 2.755 3.132
0.5 -0.083 0.808 1.323 1.910 2.311 2.686 3.041
0.4 -0.066 0.816 1.317 1.880 2.261 2.615 2.949
0.3 -0.05 0.824 1.309 1.849 2.211 2.544 2.856
0.2 -0.033 0.830 1.301 1.818 2.159 2.472 2.763
0.1 -0.017 0.836 1.292 1.785 2.017 2.400 2.670
0.0 0 0.842 1.282 1.751 2.054 2.326 2.576
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Frequency Analysis IX
KT values for Pearson Type III distribution (positive skew)

Return period in years
2 5 10 25 50 100 200

Skew Coefficient Cs or Cw Exceedence Probability
0.50 0.20 0.10 0.04 0.02 0.01 0.005

-0.1 0.017 0.846 1.270 1.716 2.000 2.252 2.482
-0.2 0.033 0.850 1.258 1.680 1.945 2.178 2.388
-0.3 0.050 0.853 1.245 1.643 1.890 2.104 2.294
-0.4 0.066 0.855 1.231 1.606 1.834 2.029 2.201
-0.5 0.083 0.856 1.216 1.567 1.777 1.955 2.108
-0.6 0.099 0.857 1.200 1.528 1.720 1.880 2.106
-0.7 0.116 0.857 1.183 1.488 1.663 1.806 1.926
-0.8 0.132 0.856 1.166 1.448 1.606 1.733 1.837
-0.9 0.148 0.854 1.147 1.407 1.549 1.660 1.749
-1.0 0.164 0.852 1.128 1.366 1.492 1.588 1.664
-1.1 0.180 0.848 1.107 1.324 1.435 1.518 1.581
-1.2 0.195 0.844 1.086 1.282 1.379 1.449 1.501
-1.3 0.210 0.838 1.064 1.240 1.324 1.383 1.424
-1.4 0.225 0.832 1.041 1.198 1.270 1.318 1.351
-1.5 0.240 0.825 1.018 1.157 1.217 1.256 1.282
-1.6 0.254 0.817 0.994 1.166 1.166 1.197 1.216
-1.7 0.268 0.808 0.970 1.075 1.116 1.140 1.155
-1.8 0.282 0.799 0.945 1.035 1.069 1.087 1.097
-1.9 0.294 0.788 0.920 0.996 1.023 1.037 1.044
-2.0 0.307 0.777 0.895 0.959 0.980 0.990 0.995
-2.1 0.319 0.765 0.869 0.923 0.939 0.946 0.949
-2.2 0.330 0.752 0.844 0.888 0.900 0.905 0.907
-2.3 0.341 0.739 0.819 0.855 0.864 0.867 0.869
-2.4 0.351 0.725 0.795 0.823 0.830 0.832 0.833
-2.5 0.360 0.711 0.771 0.793 0.798 0.799 0.800
-2.6 0.368 0.696 0.747 0.764 0.768 0.769 0.769
-2.7 0.376 0.681 0.724 0.738 0.740 0.740 0.741
-2.8 0.384 0.666 0.702 0.712 0.714 0.714 0.714
-2.9 0.390 0.651 0.681 0.683 0.689 0.690 0.690
-3.0 0.396 0.636 0.666 0.666 0.666 0.667 0.667
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Frequency Analysis X
Example: Sixteen years of the annual maxima of a river flow is given in the following table.
Calculate the 50-year return period of annual maximum discharge using the log-Pearson type III
distribution.

Year 1930 1940 1950 1960 1970
0 55900 13300 23700 9190
1 58000 12300 55800 9740
2 56000 28400 10800 58500
3 7710 11600 4100 33100
4 12300 8560 5720 25200
5 38500 22000 4950 15000 30200
6 179000 17900 1730 9790 14100
7 17200 46000 25300 70000 54500
8 25400 6970 58300 44300 12700
9 4940 26600 10100 15200

The statistics of the annual maxima in the log-scale (y = log x) are as follows:

µy =

∑
yi

n = 4.27 σy =

√∑
(yi−ȳ)2

n−1 = 0.4027 Cs =
n
∑n

i=1
(yi−ȳ)3

(n−1)(n−2)σ3
y

= −0.0696

For Cs = −0.0696 from the table of the frequency factors, we have,

KT =50 ' 2.054 + 2.00−2.054
(−1.0−0) × (−0.0696− 0) = 2.016

Therefore, y50 = ȳ + K50σy = 4.2743 + 2.016× 0.4027 = 5.0863.

Thus, x50 = 105.0863 = 121, 990 [cfs].
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Water Resources Council Method I

The values of frequency factors KT are very sensitive to the coefficients of skewness Cs . To avoid
over estimation or underestimation of floods and financial consequences the Water Resources
Council recommends a method that leads to a more accurate and robust estimate of the
coefficient of skewness (Cw ) as follows:

Cw = wCs + (1− w)Cm

where

Cs : is the sample skewness

Cm denotes a map skewness,

Cm denotes a weighted skewness (a more robust estimate),

w is an optimal weight that interpolates between these two quantities

Assuming that Cs and Cm are two independent variables, the optimal weight is defined such that
it minimizes the variance of estimate of Cw as follows:

Var(Cw ) = w2Var(Cs ) + (1− w)2Var(Cm)

To obtain the minimizer of Var(Cw ) we set its derivative to zero d
dw [Var(Cw )] = 0 which leads to

optimal value of

w =
Var(Cm)

Var(Cs ) + Var(Cm)
.

This value of the w is a minimizer of the variance of Cw as we can show that d2
dw2 [Var(Cw )] ≥ 0.
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Water Resources Council Method II
Therefore, a robust estimate of the skewness coefficient is:

Cw =
Var(Cm)Cs + Var(Cs )Cm

Var(Cm) + Var(Cs )

The water resources council recommends to consider Var(Cm) = 0.3025 and proposes a regional
map for Cm.

Figure 14: Generalized map skewness coefficients (Cm) of annual maximum streamflow from U.S.
Water Resources Council (1981).
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Water Resources Council Method III
For the Log-Pearson type III distribution and n years of annul maximum streamflow, the variance
of the sample skewness can be obtained from the following formula:

Var(Cs ) = 10A−B log10( n
10 )

A =
{
−0.33 + 0.08|Cs | |Cs | ≤ 0.90
−0.52 + 0.30|Cs | |Cs | > 0.90

B =
{

0.94− 0.26|Cs | |Cs | ≤ 1.50
0.55 |Cs | > 1.50

Example: Determine the flood with return period of 100 years form the following maximum
annual streamflow data near Austin, TX, where Cm = −0.3.

Year Annual maximum flow (x) [cfs] y=log x
1967 303 2.48
1968 5640 3.75
1969 1050 3.02
1970 6020 3.78
1971 3740 3.57
1972 4580 3.66
1973 5140 3.71
1974 10560 4.02
1975 12840 4.10
1976 5140 3.71
1977 2520 3.40
1978 1730 3.23
1979 12400 4.09
1980 3400 3.53
1981 14300 4.15
1982 9540 3.97
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Water Resources Council Method IV
Taking the logarithm of the data y = log x , the statistics of y are,

µy = 3.6388 σy =

∑
(yi − ȳ)2

n − 1
= 0.4439 Cs =

n
∑n

i=1
(yi − ȳ)3

(n − 1)(n − 2)σ3
y

= −1.244.

|Cs | > 0.9 ⇒ A = −0.52 + 0.3|Cs | = −0.52 + 0.3× 1.244 = −0.147.

|Cs | < 1.5 ⇒ B = 0.94− 0.26|Cs | = 0.617.

Thus, we have Var(Cs ) = 10−0.147−0.617 log10( 16
10 ) = 0.533 and Var(Cm) = 0.303.

The optimal weight can be calculated as follows:

w =
Var(Cm)

Var(Cs ) + Var(Cm)
=

0.303
0.303 + 0.533

= 0.362.

Then a robust estimate of the coefficient of skewness is

Cw = wCs + (1− w)Cm = 0.362× (−1.244) + 0.638× (−0.3) = −0.64.

From the table of the frequency factors for the Log-Pearson Type III distribution, for negative
skewness and T = 100 years, we have

Cw = −0.6→ KT = 1.88

Cw = −0.7→ KT = 1.806.

By linear interpolation, one can obtain Cw = −0.64 and calculate the frequency factor
KT = 1.850, which leads to

yT = µy + KTσy = 3.639 + 1.85× 0.4439 = 4.46 → QT = 104.46 = 28, 900 [cfs].
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Design Storms I

As we discussed, we collect maximum precipitation for a specific duration (e.g., maximum of
10-minute duration rainfall) for each year and then use Extreme value type I distribution to obtain
extreme precipitation events (xT ) for a specific return period.

This calculation is done by the National Weather Service and is published under the name of
Rainfall Frequency Atlas of the United States”, Technical paper No.4. These maps are available
for durations of 30 minutes to 24 hours and return period of 1 to 100 years (see Figure 15).

As a result based on the project design specifications, the design engineer shall interpolated
between isohyetals, which are lines with equal values of extreme precipitation. For shorter
durations of 5 to 60 minutes.

There is another report called NOAA Technical document Hydro-35. The maps of precipitation
depths from 5-, 15- and 60-minute durations and return period of 2 and 100 years for 37 eastern
states are available in this technical paper.

Currently, there is a Precipitation Frequency Data Server (PFDs), that can be used for obtaining
the values of design precipitation for different return periods hdsc.nws.noaa.gov/hdsc/pfds
almost all over the United States.
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Design Storms II
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8 Figure 15: 1-year 30 minute rainfall (in) in the United States as presented in U.S. Weather Bureau
technical paper 40.
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Design Storms III
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Figure 16: 100-year 24-hour rainfall (in) in the United States as presented in U.S. Weather Bureau
technical paper 40.
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Design Storms IV
Intensity-Duration-Frequency (IDF) curves

Intensity of precipitation is depth per unit time (mm/hr)

i =
p

Td

where p is the rainfall depth (mm , in) and Td is the duration, usually in hours. The frequency is
often expressed in terms of the return period T , which is the average length of time between
precipitation events.

We discussed that using extreme value Type I distribution, we can compute extreme precipitation
values for a specific duration (e.g. 10-minute) for different return periods (xT ). The explained
calculation can be simply represented in a plot called Intensity-Duration-Frequency (IDF) curves.

For specific return periods, the IDF curves are typically represented by the following parametric
equation:

i =
c

T e
d + f

(in/hr),

where Td is the rainfall duration and e, c, f are empirical coefficients that can be obtained from
historical observations of rainfall.

For example, for a 10-year return period and duration Td = 20 minutes, these coefficients over
Atlanta are c = 97.5, e = 0.83 and f = 6.88. Therefore, a 20-minute design rainfall with a
10-year return period in Atlanta is:

i =
97.5

200.83 + 6.88
= 5.15 [in/hr].
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Design Storms V
Design precipitation hyetographs from IDF curves:

There are several methods to obtain the design hyetograph from IDF curves. Here, we explain the
alternating block method through an example.

Example: Determine the design precipitation hyetograph, with 20 minutes intervals, for a 2 1
3 hour

storm in Atlanta using the IDF curve i = c/(Td
e + f ), where c=97.5, e=0.83 and f=6.88.

From this IDF curve, we can compute the rainfall intensities over 20 minutes intervals as follows:
Duration (min) Intensity (in/hr) Cumulative depth (in.) Incremental depth (in.)

20 5.1591 5.1591*20/60=1.72 1.72
40 3.45 3.45*40/60=2.3 0.58=2.3-1.72
60 2.64 2.64 0.34=2.64-2.30
80 2.17 2.89 0.24

100 1.85 3.09 0.19
120 1.62 3.24 0.15
140 1.44 3.37 0.13

To shape the design hyetograph, we alternate
incremental depths around their maximum in a
descending order as shown in the right hand side.
As is evident, this derivation is not unique
depending on whether we start the alternation
from the left or right hand side of the maximum
incremental depth.
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Design Storms VI
Rational Method:

Rational method, is a simple method for estimating the basin outflows based on different land use
and rainfall return period. In this method, the rate of the outflow of a drainage basin is
determined as follows:

Q = c i A

Q: outflow [cfs]

c: runoff coefficient 0≤ c ≤1

i : rainfall intensity [in/hr]

A: area of the basin in acres [43560 ft2]

We can divide the basin into m smaller sub-basins with more uniform land use and then obtain
the outflow based on the following equation:

Q = i
m∑

j=1

cj Aj

The runoff coefficient (cj ) for different land use and rainfall return period may be obtained from
the following table.
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Design Storms VII

Figure 17: Values of the runoff coefficients in the rational method.
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Design Storms VIII
Rational method is widely used in the design of storm sewer systems. To that end, we first need
to define the design storm in terms of its total depth and duration. The total depth of the design
rainfall can be obtained from NOAA rainfall design maps (e.g., see Figure 14) or regional IDF
curves for calculation the design intensity i = p/Td . The design duration (Td ) is the time of the
concentration of the basin that drains water into the sewer system,

Td = tc =
n∑

i=1

Li

Vi
.

Example: Determine the required pipe diameter for a storm sewer drainage system for a T = 5 yr
return period, where A = 5 acres, c = 0.6 and tc = Td = 10 minutes. The design precipitation is
give by following IDF equation,

i =
100T 0.2

Td + 30
= 4.14 in/hr,

Q = c i A = 0.6× 4.14× 5 = 12.42 cfs.

Elevation of the basin changes 3 ft in 500 ft of length. Thus the slope is S0 = 3
500 =0.006 and the

manning’s coefficient is n = 0.02. Using the Manning equation, we have

Q = 1.49
n S1/2

0 AR2/3

Q = 1.49
n S1/2

0
πD2

4 ( D
4 )2/3 = 0.463

n S1/2
0 D8/3

and thus D = ( 2.16 n Q√
S0

)3/8 = ( 2.16×0.02×12.42√
0.006

)3/8 = 2 [ft].
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