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Introduction |

Hydrologic processes can be partly explained by deterministic models, however some processes are
not still well understood and shall be chracterized through statistical models. Statistical models
explain hydrologic processes based on their historical observations.

A random variable can be explained with a probability distribution, which is a parametric function
that characterizes the probability of occurrence of that variable.

Random variable:

A random variable (X) is a variable whose possible values are outcomes of a random process.
There are two types of random variables:

a) A discrete random variable, which only takes countable number of values.

b) A continuous random variable that takes infinite number of possible values.

e A finit set of observations xi, x2, . . ., x, of a random variable is called a sample set.
e The space that all samples can be drawn is called the sample space.
e A subset of the sample space is called an event.

For example Q = {x|x =0,1,2,....... ,10} can respresent a sample space, where

A = {x]1 < x < 6} is an event.

The box in the right hand side has three oranges
(o) and two blue (b) discs as the entire sample
space.

2
5
p(o) = £, where p(0) + p(b) = 1 R
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Introduction |l

e Total probability:

p(A1) + p(A2) + ... p(An) = p(2) =1
where Aj,... A, are disjoint events.

e Complementarity:

p(A)=1—p(Q — A) =1— p(A) A : compliment of A
0

~ A
A

e Conditional Probability: Suppose we have two events A and B, the conditional probability
P(A|B) refers to the probability of the event A given that the event B has already occurred

p(AIB) = %
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Introduction IlI

where p(A N B) is the joint probability, which is shown with a solid hatch in the following sample
space.

0

If two events are independent, we have,
p(ANB)
p(AIB) = p(a) = 2202
p(B)
and thus p(A N B) = p(A).p(B).

e Marginal probability: The marginal probability of an event is a probability that does not account
for probability of occurence of other dependent random variables. For example, if p(AN B) # 0 is
not empty, then the marginal distribution of p(A) is p(A) = ZB p(AN B).

For example, if we assume that values of total annual precipitation amounts are independent

random variables (X) and p(X < 40”) = a, then p(X; < 40" N X» < 40”) = a%, because these
two events are assumed to be independent.

Moreover, if p(X < 35”) = 0.333 and p(X > 45") = 0.275, then the complement probability is
p(35 < X < 45) = 1 — 0.333 — 0.275 = 0.392.
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Introduction IV

Frequency histograms vs probability distributions:

If we have a finite number of n independent and identically distributed samples of X, we can first
determine the range of the random numbers and then divide it into discrete intervals with a size
of Ax. Then we can count the number of values (n;) that fall within [x;, x; + Ax] and divide it by
the total number of samples (n) to obtain the frequency of occurrence within each interval.

i

flx <X <xi+0x)~ 2
n

f() A fo () A

Ax—0

| »

Ax b X X Xisy X"

Figure 1: Probability histogram of discrete random numbers (left) versus probability density
function of continuous random variables (right).

As Ax — 0, we can say that the histogram approaches to the probability distribution function
(PDF) fx(x), in which the probability of an interval is

xj+Ax
pr(xi < X < x;+ Ax) = / fx(u)du.
Note that f;(.) is the frequency function and fx(.) refers to the probability density function (PDF).
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Introduction V

fs(x) A

Fs(x) A Fx(x)A

X > X
Figure 2: Cumulative frequency (left) and cumulative density functions (CDF) (right).

Clearly, we can define some of the frequency and probability density functions as follows to obtain
the cumulative frequency and density functions,

i
Fs(xi) = E fs(xj) = cumulative frequency function
j=1

Fx(xi) = / fx(u)du = cumulative density function.

oo
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Introduction VI

As a result, we can have,

Xi+Dx x;
prob(x; < X < x; + Ax) = Fx(x; + Ax) — Fx(x;) = / fx(u)du — / fx (u)du

Moments of probability distributions:

Moments of a probability distribution are statistical parameters that can be used to extract
essential information about the position and shape of a probability distribution.

p=E(x)= / x fx(x)dx

oo

First-order moment of fx(x):

Second-order central moment of fx(x):

Third-order central moment of fx(x):
oo
v =E(x —p)’ = / (x = 1)>fx(x)dx
— 00

A percentile of a distribution is a statistic that indicates the value below which a given percentage
of the probability mass falls. For example, the 95th percentile is the value below which 95% of
the probability mass of A distribution is located.
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Introduction VII
fx(x) A

Figure 3: Mean (u) of a PDF is a measure of its central tendency or location. Standard deviation
(o) is a measure of width or dispersion of the random variable around its mean. Densities with
larger standard deviation are wider than those with smaller standard deviations. The third order
central moment () is a measure of symmetry or skewness of the random variable. The densities
with v > 0 are positively skewed and those with v < 0 are negatively skewed.

As an example,

fs (X)
3
p=%=FE(x)=1x03+2x05+3x 0.2:1.9:21 L ifel)
i
02 =E(x—p)? = (1-1.9)2 x0.3+(2—1.9)2 X 0.5+ (3—1.9)2 x 0.2 =
81 X 0.3+ 0.01 X 0.5+ 1.21 X 0.2 = 0.49
v = E(x—p)3 = (1-1.9)3 x0.3+(2—1.9)3 0.5+ (3—1.9)3 x 0.2 = 0.048
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Introduction VIII

We often normalize or rescale the statistical moments to make them more meaningful.

Coefficient of variation:

cv=2
m
Coefficient of skewness: s
E —
c, - Bl ' 1)
a

Note: When sample size is small, discrete approximation of the moments may be biased. To
obtain unbiased estimates, the following formulas shall be used:

2 _ 1 n 2
Ox = 7=1 2;21(X’ W)
n
)3
nZi:l(X' »)

(n—1)(n—2)c3

s , where C; < 0 (negative skewness)  C; > 0 (positive skewness).

In the above unbiased sample statistics © = (Z" . x,-) /n.
i=
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Common PDFs in Hydrology |

Normal Distribution:

—(x = )’
f = — 7
X(X) Van exp( 202 )
Fi(x) :/ fx(u)du
[ BRsasnsasnssnssensasnenans asnens nane ne
L H=0, 0?=02,— |
=0, 0?=1.0,—

p=0, 07=50,— |

E(x — p)? —Oand]E(xf/yt)4 o
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Common PDFs in Hydrology Il

03 04

0,2

0,0 01

95.4%

99.7%

Figure 5: Distribution of the probability mass of a normal distribution based on different values of
its standard deviation.

If we define the standard normal variable as z = X—;E, which is often called z-score, the
distribution of z will have zero mean and a standard deviation equal to one. This distribution is
called the standard normal distribution and has the following analytical form:

1 ( —22)
exp(—
V2m 2

The cumulative distribution function (CDF) of the standard normal is:

() =
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Common PDFs in Hydrology IlI

®,(z) = \/LET du

2w

In statistics, one often uses the so-called error function as follows:

1 ) 2 2 ) 2
erf(x) = — e du=— e “du
et

—x 0

where, the complementary error function is defines as,

erfc(x) =1 — erf(x 7” du
v /

The values of the error function for different input values are given in the following table and can
be obtained in MATALB using erf (x) function.

Hundredths digit of x

x 0 1 2 3 4 %) 6 7 8 9
0.0 | 0.00000 0.01128 0.02256 0.03384 0.04511 0.05637 0.06762 0.07886 0.09008 0.10128
0.1 | 0.11246 0.12362 0.13476 0.14587 0.15695 0.16800 0.17901 0.18999 0.20094 0.21184
021022270 023352 024430 025502 026570 027633 028690 0.29742 030788 0.31828
0.3 | 0.32863 033891 0.34913 0.35928 0.36936 0.37938 0.38933 0.39921 0.40901 0.41874
0.4 | 0.42839 0.43797 044747 045689 046623 047548 0.48466 049375 0.50275 0.51167
0.5 | 0.52050 0.52924 0.53790 0.54646 0.55494 056332 0.57162 0.57982 0.58792 0.59594
0.6 | 0.60386 0.61168 0.61941 0.62705 0.63459 0.64203 0.64938 0.65663 0.66378 0.67084

Figure 6: Values of the error function.
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Common PDFs in Hydrology IV

We can use the error function to compute the cumulative distribution function of the standard
normal density function ®,(z) as follows:

2
z —u z 2
.(2) = = J° e du,  erf(z) = < fo e du

i — _t — dt = =
If we do a change of variable as u = 7 and thus du = 75 we have u =0= t =0 and

u =z =t =+/2z. Applying this change of variable to the error function, we gey

f(2) 2 v %tz dt 2 v %tzdt
er\z) = —— e —_— = e
Nz V2 2w
\[Z —t2 d 1 ;tzd)
= e 2 dt — e 2 t

erf(z) = 2 (6(v3z) — 6(0)) = 2 (¢(ﬁz) _ %)

As thus,

which results in,
1 f
©,(v2z) = 7“2’ ()

By another change of variable, we get

z —

NI
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Common PDFs in Hydrology V

e
2

1+ erf(Lz)
d,(z) = ——=

Therefore if x ~ N (11, o) and we are interested to compute Fx(x) = p,(X < x), we should
follow the following steps:

_ 1+ erf(%)
X
- B (X <x)=d,(2z) = Tﬁ

MATLAB: normcdf (x,u,o)

Z =

Example: Assume that X is from a normal distribution with . = 2 and o = 3, what is the
probability of p,(2.5 < x < 5)=?

x=25=z= 2572 =0.167

x=5=z=22=1= p(0.167 < z < 1) = (1) — $(0.167)

1terf(-L)
o(1) = —2° = 0.8413
14erf( 2167
©(0.167) = ——2" = 0.5663

p,(0.167 < z < 1) = d(1) — ©(0.167) = 0.2752

Statistical Hydrology Ardeshir Ebtehaj



Common PDFs in Hydrology VI

Log-normal Distribution:

Hydrologic variables are often skewed. A logarithm transformation often makes them more
symmetric and allows a more robust estimation of their statistics. If a random variable Y=log X is
normally distributed, then X has a log-normal distribution.

1 (v = l‘y)2>
exp | — x>0
oV2rm P ( 20’5

where 11, and o, are the mean and standard deviation of Y.

5, 1=0 L0 0=0.25 clO.lZS
|

e

/ 9

A 10 So.

= AL\ \ ch =10
0.4 / -

0.5 [ 65=0.5, =0 /l

. 0.2,
A/ =Y
05 10

0 0.5 10 15 20 25 0
X

fx(X) = X

o)

0=0.

1\
\L

15 2.0 2.5
X

Figure 7: The PDF (left) and CDF (right) of the log-normal density function.
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Common PDFs in Hydrology VII

Exponential distribution:

Some hydrologic process, such as the occurrence time between precipitation events can be
explained by the an exponential distribution, which has the following expressions:

fix(x) = Ae ™™ x>0 A>0
Fx(x)=1—e ™
o 2oL
T X2
1.6 T T T T
14l A=05 |
1.2r — A=l |
Lo A=15 | |
Zosf 1
0.6 1 1
0.41 R ]
0.2F 1
%71 2 3 a s

Figure 8: The PDF (left) and CDF (right) of an exponential density function.
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Common PDFs in Hydrology VIII

Gamma distribution: A two parameter Gamma distribution is defined as follows:

ABxB—1g—Ax
fx(x):% forx >0 and X8>0

where )\ is a width parameter and (3 catheterizes the shape. The following relationship holds
between the parameters and the first and second order moments.

2
A= ad g
o3 o3

The gamma function for positive integers and real numbers are '(a) = (a — 1)! and
Ma) = J;oo x*~Le™*dx, respectively.

0.5 T T 1

0.3

T
—— B =10, X1=20 0o 3
=20, =20 |
04 ¢ =30, =20 08 E E
£\ =50, =10 07 E -
3 —— =90, =05

— =75 =10 06 ¢
=10 05

E 04 ©
03 [
E 02
0.1

- 0
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

=0.5,

0.2

T

0.1

Figure 9: The PDF (left) and CDF (right) of the gamma density function.
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Common PDFs in Hydrology IX

Gumbel distribution:

1
f(x,B8) = =
(x, 8) 5 5

u~ pu—0.577283, B =

X —u X —u
exp | ——— — exp(— )

\/go'x
pat

B

where p and o are the mean and standard deviation of x.

—o00 < x < o0

0.20 T T T T 10 T
0.18 - - 09 |- 1
0.16 1= f(x,u=05, B=2.0) —— b 08~ b
0, =20) ——
0.14 - f(x 5, =30) ~ 0.7 4
f(x, =30, =4.0)
012 | B 06| R
010 = 7 05 = F(x,U=05, B=2.0) —— 7
F(x =20) ——
008 B 04 F(x, =15 =30) —— :
F(x, =30, =40)
0.06 - — 03| —
0.04 |- g 02t g
0.02 - B 01 1
0.00 L . 0.0 L . L L
-5 o 5 10 15 20 -5 o 5 10 15 20
Figure 10: The PDF (left) and CDF (right) of the Gumbel distribution.
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Common PDFs in Hydrology X

Pearson Type IllI:

This density is a three parameter gamma density function that has an extra location parameter e.
AP (x — 6)37187)\0(76)
r(s)

A= Jxv ﬁ:(i)z, e:,u—ax\/g.
i e

fx(X) =

X > €

My mean of x

o: standard deviation of x

Cs: skewness coefficient of x.

Log Pearson Type IlI:

My — )P le 20—
<T(5) ;

fx(x) = log x > €
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Fitting a probability distribution |

Method of Moments:

When we have a set of random samples, we are often interested to obtain a parametric
representation for the distribution of those random numbers. To obtain that parametric
representation, we first need to choose a PDF and then estimate its parameters such that the
density represents well the observed samples. To that end, we can simply compute the sample
statistics of the distribution and use them to estimate the parameters.

_ "27:1()(" -%’

ZX,‘ 2 1 c
" h-1)(n—2)o

x== = Ti(x — %)
. 7 = —— %l )

For example for normal and exponential distribution we have:

Y
fx(x) = 5o exp(— (XQJ;) ) normal distribution
1
fi(x) = Ae™ ™ A==
X

Example: Assume that x;={2.4, 4.25, 0.77, 13.22, 3.55, 1.37} are drawn from an exponential
density function. What is the best estimate of the A parameter based on the method of moment?

2.4 +4.25+40.77 + 13.22 + 3.55 + 1.37 4.8
5 = 4.

A =1 =0.234 and thus fx(x) = 0.234 e~ 02

X =

However, the question is, how can we choose the best probability density function? In other
words, we need a goodness of fit test to differentiate between different candidate PDFs and
understand what is the best representative density function.

Statistical Hydrology Ardeshir Ebtehaj 19



Fitting a probability distribution 11

Chi-Squared test:

Let's assume that we have a set of n samples {x; ;’:1

can divide the observation domain into a set of intervals [x;_1, X;], and compute the frequency of
occurrence of x; as follows f;(x;) = L, where

that are drawn from an unknown PDF. We

n: is the total number of observations and
n;: is the number of observations that fall with [x;—1, x;].

For a chosen probability model fx(x), we have f(x;) = Fx(x;) — Fx(xi—1) where Fx(.) is the
CDF function of the chosen probability model. If we assume that our histogram has m intervals,
one may compute the following statistic that represents the deviation between the observed
frequency of occurrence nf;(x;) and expected ones nfx(x;),

m

2 N Inh0s) = nf GO N nlhiGa) — FOo)P
Xw = Z nf () - Z 0q)

i=1 i=1

If we assume that the error e = f(x;) — p(x;) is normally distributed then x2 has a chi-squared
distribution with degree of freedom k = m — p — 1, where m is the number of intervals and p
denotes the number fitted parameters for the chosen distribution.

Chi-squared distribution has the following density function:

1 K_1 _X
(x)= ———x2 2
fie (x) 2N/ZF(%)X e

8
n=rK 0')2<:2H C = —
K

N
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Fitting a probability distribution 111

fr(x)

2

Xk

k
k

© O W =

Fy(a)
1.0

0.8
0.6
0.4

0.2

0 1 2
Figure 11: The PDF (left) and CDF (right) of the Chi-Squared distribution.

Example: We have a record of 69 years of annual precipitation data (inches) with the sample

4

6

8

T

0.0
0

2

4

6

mean and standard deviation X = 39.77 [in] and o = 9.17 [in]. We have the null hypothesis that

these annual precipitation data are not drawn from a Gaussian Distribution. Use the chi-squared

test to accept or reject the null hypothesis.

Year | 1910 | 1920 | 1930 | 1940 | 1950 | 1960 | 1970
0 48.7 44.8 49.3 31.2 46.0 33.9
1 39.9 44.1 34.0 44.2 27.0 44.3 31.7
2 31.0 42.8 45.6 41.7 37.0 37.8 31.5
3 42.3 48.4 37.3 30.8 46.8 29.6 59.6
4 42.1 34.2 43.7 53.6 26.9 35.1 50.5
5 41.1 32.4 41.8 345 25.4 49.7 38.6
6 28.7 46.4 41.1 50.3 23.0 36.6 43.4
7 16.8 38.9 31.2 43.8 56.5 32.5 28.7
8 34.1 37.3 35.2 21.6 43.4 61.7 32.0
9 56.4 50.6 35.1 47.1 41.3 47.4 51.8

Statistical Hydrology
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Fitting a probability distribution 1V

Interval (i) Range (i) n; fs(xi) Fs(xi) z; F(X < x;) f(x;) X
1 <20 1 0.014 0.014 | -2.157 0.015 0.015 | 0.004
2 20-25 2 0.029 0.043 | -1.611 0.053 0.038 | 0.147
3 25-30 6 0.087 0.130 | -1.065 0.144 0.090 | 0.008
4 30-35 14 | 0.203 0.333 -0.520 0.301 0.158 | 0.891
5 35-40 11 | 0.159 0.493 0.026 0.510 0.209 | 0.805
6 40-45 16 | 0.232 0.725 0.571 0.716 0.206 | 0.222
7 45-50 10 | 0.145 0.87 1.117 0.868 0.151 | 0.019
8 50-55 5 0.072 0.942 1.662 0.952 0.084 | 0.114
9 55-60 3 0.043 0.982 2.208 0.986 0.034 | 0.163
10 > 60 1 0.014 1.00 2.753 1.000 0.014 | 0.004
Total 69 1.00 2.377

For example in the above table, for the 4 interval, we have

fs(xa) = % =0.203

Fs(xs) = 0.014 + 0.029 + 0.087 + 0.203 = 0.333

Let's fit a Gaussian distribution with the following statistics:

x =39.77" o =9.17"

Having the above parameters for a Gaussian density, we can compute the probabilities of the third
and forth intervals as follows:

i=4=z =X —4 =
2
1terf(Z4)
V2! _
— = bz =
Statistical Hydrology

35-30.77 _ _
o =052

—0.52) = F(X, = 35) = 0.301
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Fitting a probability distribution V

i=3= 7z =327 = 1065
¢.(z3 = —1.065) = F(X3 = 30) = 0.144
f(X4) = F(X4) — F(X3) = 0.158

nlfs (xa) = (xa)12
f(x4)

= 2.377, where, m = 10, p = 2 and the degree of freedom

And in the last column for i = 4, we have, = 0.81 and the sum for all intervals is

2 _NTm o lfsbg) =)
Xr = i=1 f(x;)

kK =m — p—1=7. The chi-squared statistic for significance level o = 0.95 can be computed
from available tables (e.g., https://www.medcalc.org/manual/chi-square-table.php) or
existing software tools. In the problem at hand x,—0.0s = 14.1 for Kk = 7.

Note: if you have access to a computer program that can automatically compute F(x;),
given the mean (29.77 in) and standard deviation (¢0=9.17 in.) of the fitted normal
distribution, you don't need to compute z;. In MATLAB f(x;) = F(x;) — F(xi—1) =
normedf (x;, p, o) — normedf (xi—1, p, o), where . = 29.77 [in] and o = 9.17 [in] in the
above example. Moreover the inverse of the Chi-Squared distribution can be obtained
using the following command in MATLAB.

Xoa = 14.1 = ch2inv(0.95,7)
In Excel the command is as follows:
14.1 = chinve(0.95,7)

In MATLAB, the above Chi-squared test can be done with h = chi2gof (x) in which for
h = 0, we can reject the null hypothesis and assume that samples are drawn form the
Gaussian density with significance level 95%.

Statistical Hydrology Ardeshir Ebtehaj 23
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Fitting a probability distribution VI

Here, the null hypothesis is that the samples are not drawn from the normal distribution. We
have to check whether the hypothesis can be accepted or shall be rejected. It is important to note
the null hypothesis is often referred to the case that there is no relationship between two
measured phenomena, or no association exists between the sampled random variables and the

chosen probability distribution.

i (X)

a: significance level

N

>
| X ]
Reject the null hypothesis' Accept the null hypothesis
X2 X2
Fe 004
1 S
a=095 /‘\"
/ |
|
/ |
_ i
— 1
Xa=F () X

Figure 12: A schematic showing the Chi-Squared test for significance level o = 0.95. When

)(,2c < Xq, it is likely that the computed statistic is drawn from a chi-squared density. Thus, with
significance level o = 0.95, the samples are drawn from a Gaussian distribution and we can reject
the null hypothesis. However, when Xi > Xq, the computed statistics may not belong the
chi-squared density and thus it is very likely that the samples are not drawn for the Gaussian
density. Thus we can accept the null hypothesis with significance level o« = 0.95.
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Frequency Analysis |

Frequency analysis in hydrology is for explaining extreme hydrologic events that can not be
properly described via physical modeling. It is important to note that when we fit a probability
density function to a finite number of samples, we assume that those samples are independent
and identically distributed (i.i.d). For example, two samples of streamflow rate from today and
tomorrow can be considered as two samples from the same distribution but it is very likely that
they are not independent. However, for example maximum annual streamflow rates can be
considered as independent random variables.

Extreme events: An extreme event is an event that has very low probability of occurrence and a
long return period.

fx ()

/ Fx(X>x7)=p
\ x>
Fyx (X
x ( )f,
(1-p)
- =y X

Figure 13: The extreme value x7 and return period T of an extreme event can be inferred from
probability distribution of independent and identically distributed annual maxima of the event
(e.g., streamflows) or block maxima of other variables of interest. Note that x7 is the

100(1 — p)th percentile of fx(x), where p denotes the probability of exceedance.

Statistical Hydrology Ardeshir Ebtehaj
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Frequency Analysis |l

The following table represents the annual daily maximum discharge in cfs of a river station for
almost five decades.

Year 1930 1940 1950 1960 1970

0 55900 | 13300 | 23700 9190
58000 | 12300 | 55800 9740
56000 | 28400 | 10800 | 58500
7710 11600 4100 33100
12300 8560 5720 25200
38500 22000 4950 15000 | 30200
179000 | 17900 1730 9790 14100
17200 46000 | 25300 | 70000 | 54500
25400 6970 58300 | 44300 | 12700
4940 26600 | 10100 | 15200

©O| O N[O O H|W| N

For example assuming x7=50,000 cfs, we can see that nine times the maximum annual flow
exceeds this extreme event with the following recurrence intervals:

th=4t=1t=11t=161t =23t =61t =51t =>5yr
Therefore, the return period is T = E(t) = Xt;/n = % = 5.125 year.

Let us assume that the probability of exceedance of an extreme event is denoted by p. If an
extreme event occurs after t years, it means that there were t — 1 years without any extreme
event. Therefore, the probability distribution of the return period maybe explained by a specific
form of the binomial distribution as follows:

pr(t) = (1—p)'p.

Statistical Hydrology Ardeshir Ebtehaj 26



Frequency Analysis Il

The expected values of t or the return period can be calculated as

oo

T=BE(@r)=» t1-p)p

t=1

=p+2(1-pp+3(1—p)Pp+41—p)’p+...
=pl+20—p)+301-p’+41-p)>+..]

- P -t
T R-@-pP e

Therefore, T = E(t) =
exceedence of xr,

, and thus the return period is equal to the inverse of the probability of
1 -1
7:17F(XT):p and thus x7 = F~ (1 — p).

Example: For an x7 = 50000 [cfs], the return period can be obtained as T = E(t) = 5.1 yr,
which results in p = % = 0.195.

Question: What is the probability that a T-year return period event will occur at least
once in N years?

P.(X < xr for N consecutive years) = (1 — p)(1 — p)... = (1 — p)"
1
P.(X > xr at least once in N years) =1 — (1 —p)" =1 — (1 — 7)N
Statistical Hydrology Ardeshir Ebtehaj



Frequency Analysis [V
Example: Estimate the probability that annual maximum discharge Q will exceed 50000 cfs at
least once during the next 5 years.
p= % = 5—11 = 0.195
p(Q > 50000) cfs at least once in the next five years =1 — (1 — 0.195)° ~ 0.66.
Extreme Value Distributions:
Two classes of distributions are commonly used in hydrologic extreme value analyses:
(1) Extreme value type 111,111
(2) Log-Pearson Type Il

Extreme value type | or the Gumbel distribution is often used for rainfall frequency analysis as

follows:
x(x) 1exp[ x4 exp( Xﬁu)] oo < u< oo
x(X) = 7 - - - -
B B B
u=p—0.57723
V6o,
g = Y2
g
X —u
Fx(x) = exp[—exp(— 3 ) —oo<u<oo
if we define a reduced variable as
X —u
y = s
B
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Frequency Analysis V

we have:

F(X)

we showed that,

nlie

from (1) & (2) we have,

exp[—exp(—y)]| =y =—In [In(l__Xl(X) )] (1),
oo XT
=p= / fx(x)dx =1 — / fx(x)dx
XxT o
T-1

=1- F(XT) = F(XT) = -,

T (2

yr = — In[In(

—)l

xT = u+ Byr.

1

Therefore, given the return period T, we can compute y7r and knowing the distribution
parameters from the method of moment, we can obtain the associated extreme event x7.
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Frequency Analysis VI

Example: Annual maximum value of 10-minute-duration rainfall in a specific location is presented
below. Calculate the 10-minute-duration maximum rainfall for 5- and 10-year return period.

Year | 1910 | 1920 | 1930 | 1940
0 0.53 0.33 0.34
1 0.76 0.96 0.70
2 0.57 0.94 0.57
3 0.49 0.80 0.80 0.92
4 0.66 0.66 0.62 0.66
5 0.58 0.68 0.71 0.65
6 0.58 0.68 1.11 0.63
7 0.41 0.61 0.64 0.60
8 0.47 0.88 0.52
9 0.74 0.49 0.64

N

Y29x = 0.138

T

u=0.649 o, =0.177in B =
u=p—0.57728 = 0.569

yr =~ Inin(+57)]

yr=—1In [In(%)] =15

xr = u+ Byr = 0.569 + 0.138 x 1.50 = 0.78"’
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Frequency Analysis VIl

Log-Pearson Type Il is used for flood frequency in the United States. Recall that as the Gumbel
distribution was invertible, we have closed form expression for its percentile and thus could find an
analytical expression for the extreme values of annual rainfall maxima (xt for return period T as

follows: L
fX2xr)=p=Fx (1-p)=xr

However, the CDF of many distributions is not invertible. For computational convenience, we use
a frequency factor K7 and express the percentile of the distribution for return period T as follows:

X7 = pix + Krox,

where py and oy are the mean and standard deviation of the random variable x. When the
random variable has significant positive skewness, we take y = log x and then we have

yT = py + Kroy.

Finding y1, then one can obtain x7=10"T. For complex distributions such as the log-Pearson
type Ill, the relationship between K7 and T is given in some pre-calculated tables for the
log-transformed variable. In the tables shown in the following slides, the frequency factor Kt is
given for return period T = 2,5, 10, 25, 50, 100, 200 yrs as a function of the sample skewness
coefficient of the data (C;) in the logarithm scale.
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Frequency Analysis VIII

K values for Pearson Type IlI distribution (positive skew)
Return period in years
2 [ 5 [ 10 [ 25 [ 50 [ 100 [ 200
- Exceedence Probabilit:

Skew Coefficient Cs or Cw 050 0.20 0.10 0.04 002 001 [ 0005
3.0 -0.396 0.420 1.180 2.278 3.152 4.051 4.970
2.9 -0.390 0.440 1.195 2.277 3.134 4.013 4.909
2.8 -0.384 0.460 1.210 2.275 3.114 3.973 4.847
2.7 -0.376 0.479 1.224 2272 3.093 3.932 4.783
2.6 -0.368 0.499 1.238 2.267 3.071 3.889 4.718
2.5 -0.360 0.518 1.250 2.262 3.048 3.845 4.652
2.4 -0.351 0.537 1.262 2.256 3.023 3.800 4.584
2.3 -0.341 0.555 1.274 2.248 2.997 3.753 4.515
22 -0.330 0.574 1.284 2.240 2.970 3.705 4.444
2.1 -0.319 0.592 1.294 2.230 2.942 3.656 4.372
2.0 -0.307 0.609 1.302 2219 2.912 3.605 4.298
1.9 -0.294 0.627 1.310 2.207 2.881 3.553 4.223
1.8 -0.282 0.643 1.318 2.193 2.848 3.499 4.147
1.7 -0.268 0.660 1.324 2.179 2.815 3.444 4.069
1.6 -0.254 0.675 1.329 2.163 2.780 3.388 3.990
1.5 -0.240 0.690 1.333 2.146 2.743 3.330 3.910
1.4 -0.225 0.705 1.337 2.128 2.706 3.271 3.828
13 -0.210 0.719 1.339 2.108 2.666 3.211 3.745
1.2 -0.195 0.732 1.340 2.087 2.626 3.149 3.661
11 -0.180 0.745 1.341 2.066 2.585 3.087 3.575
1.0 -0.164 0.758 1.340 2.043 2.542 3.022 3.489
0.9 -0.148 0.769 1.339 2.018 2.498 2.957 3.401
0.8 -0.132 0.780 1.336 1.993 2.453 2.891 3.312
0.7 -0.116 0.790 1.333 1.967 2.407 2.824 3.223
0.6 -0.099 0.800 1.328 1.939 2.359 2.755 3.132
0.5 -0.083 0.808 1.323 1.910 2.311 2.686 3.041
0.4 -0.066 0.816 1.317 1.880 2.261 2.615 2.949
0.3 -0.05 0.824 1.309 1.849 2.211 2.544 2.856
0.2 -0.033 0.830 1.301 1.818 2.159 2.472 2.763
0.1 -0.017 0.836 1.292 1.785 2.017 2.400 2.670
0.0 0 0.842 1.282 1.751 2.054 2.326 2.576
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Frequency Analysis [X

K values for Pearson Type IlI distribution (positive skew)
Return period in years
2 5 10 25 50 100 200
Skew Coefficient Cs or Cyy Exceedence Probability

0.50 0.20 0.10 0.04 0.02 0.01 0.005

-0.1 0.017 0.846 1.270 1.716 2.000 2.252 2.482
-0.2 0.033 0.850 1.258 1.680 1.945 2.178 2.388
-0.3 0.050 0.853 1.245 1.643 1.890 2.104 2.294
-0.4 0.066 0.855 1.231 1.606 1.834 2.029 2.201
-0.5 0.083 0.856 1.216 1.567 1.777 1.955 2.108
-0.6 0.099 0.857 1.200 1.528 1.720 1.880 2.106
-0.7 0.116 0.857 1.183 1.488 1.663 1.806 1.926
-0.8 0.132 0.856 1.166 1.448 1.606 1.733 1.837
-0.9 0.148 0.854 1.147 1.407 1.549 1.660 1.749
-1.0 0.164 0.852 1.128 1.366 1.492 1.588 1.664
-1.1 0.180 0.848 1.107 1.324 1.435 1.518 1.581
-1.2 0.195 0.844 1.086 1.282 1.379 1.449 1.501
-1.3 0.210 0.838 1.064 1.240 1.324 1.383 1.424
-1.4 0.225 0.832 1.041 1.198 1.270 1.318 1.351
-1.5 0.240 0.825 1.018 1.157 1.217 1.256 1.282
-1.6 0.254 0.817 0.994 1.166 1.166 1.197 1.216
-1.7 0.268 0.808 0.970 1.075 1.116 1.140 1.155
-1.8 0.282 0.799 0.945 1.035 1.069 1.087 1.097
-1.9 0.294 0.788 0.920 0.996 1.023 1.037 1.044
-2.0 0.307 0.777 0.895 0.959 0.980 0.990 0.995
-2.1 0.319 0.765 0.869 0.923 0.939 0.946 0.949
-2.2 0.330 0.752 0.844 0.888 0.900 0.905 0.907
-2.3 0.341 0.739 0.819 0.855 0.864 0.867 0.869
-2.4 0.351 0.725 0.795 0.823 0.830 0.832 0.833
-2.5 0.360 0.711 0.771 0.793 0.798 0.799 0.800
-2.6 0.368 0.696 0.747 0.764 0.768 0.769 0.769
-2.7 0.376 0.681 0.724 0.738 0.740 0.740 0.741
-2.8 0.384 0.666 0.702 0.712 0.714 0.714 0.714
-2.9 0.390 0.651 0.681 0.683 0.689 0.690 0.690
-3.0 0.396 0.636 0.666 0.666 0.666 0.667 0.667
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Frequency Analysis X

Example: Sixteen years of the annual maxima of a river flow is given in the following table.
Calculate the 50-year return period of annual maximum discharge using the log-Pearson type Il
distribution.

Year 1930 1940 1950 1960 1970
0 55900 | 13300 | 23700 9190
58000 | 12300 | 55800 9740
56000 | 28400 | 10800 | 58500
7710 11600 4100 33100
12300 8560 5720 25200
38500 22000 4950 15000 | 30200
179000 | 17900 1730 9790 14100
17200 46000 | 25300 | 70000 | 54500
25400 6970 58300 | 44300 | 12700
4940 26600 | 10100 | 15200

OO N O O | W| N

The statistics of the annual maxima in the log-scale (y = log x) are as follows:

i =72 A" (-9
py =" =427 o, = ZYTY =04027 G = (X_:&%Zw = —0.0696
y
For C; = —0.0696 from the table of the frequency factors, we have,
Kr—so = 2.054 + 352G x (~0.0696 — 0) = 2.016

Therefore, yso = ¥ + Ksoo, = 4.2743 4 2.016 x 0.4027 = 5.0863.
Thus, xso = 10°%83 = 121,990 [cfs].
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Water Resources Council Method |

The values of frequency factors Kt are very sensitive to the coefficients of skewness Cs. To avoid
over estimation or underestimation of floods and financial consequences the Water Resources
Council recommends a method that leads to a more accurate and robust estimate of the
coefficient of skewness (C,,) as follows:

Cy =wGC + (1 — w)Cp
where
Cs: is the sample skewness
Cp, denotes a map skewness,
Cm denotes a weighted skewness (a more robust estimate),
w is an optimal weight that interpolates between these two quantities

Assuming that C; and G, are two independent variables, the optimal weight is defined such that
it minimizes the variance of estimate of C,, as follows:

Var(Cy) = w?Var(Gs) + (1 — w)?Var(Cp)

To obtain the minimizer of Var(C,) we set its derivative to zero £ [Var(C,)] = 0 which leads to
optimal value of

_ Var(Cm)
= Var(Cs) + Var(Cm)

This value of the w is a minimizer of the variance of C, as we can show that %[Var(Cw)] > 0.
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Water Resources Council Method 1l

Therefore, a robust estimate of the skewness coefficient is:

Cp =
Var(Cn) + Var(GC)

_ Var(Cn)GCs + Var(Gs)Crm ‘

The water resources council recommends to consider Var(Cp,) = 0.3025 and proposes a regional
map for Cp,.

) L > Lla
o o D 0 g ° 0 100 200
- 0 100 Miles 5N Miles
Miles

Figure 14: Generalized map skewness coefficients (Cp) of annual maximum streamflow from U.S.
Water Resources Council (1981).
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Water Resources Council Method Il

For the Log-Pearson type Il distribution and n years of annul maximum streamflow, the variance
of the sample skewness can be obtained from the following formula:

Var(C,) = 1078 g10({5)

—0.33+0.08|Cs| |G| < 0.90 0.94 — 0.26|Cs| |G| < 1.50
—0.52 + 0.30|Gs| |G| > 0.90 0.55 |Cs| > 1.50
Example: Determine the flood with return period of 100 years form the following maximum
annual streamflow data near Austin, TX, where C,, = —0.3.
Year | Annual maximum flow (x) [cfs] | _y—log x
1967 303 2.48
1968 5640 3.75
1969 1050 3.02
1970 6020 3.78
1971 3740 3.57
1972 4580 3.66
1973 5140 3.71
1974 10560 4.02
1975 12840 4.10
1976 5140 3.71
1977 2520 3.40
1978 1730 3.23
1979 12400 4.09
1980 3400 3.53
1981 14300 4.15
1982 9540 3.97
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Water Resources Council Method 1V

Taking the logarithm of the data y = log x, the statistics of y are,

)2 n -\3
yi—y ny . (yi—7y)
L = 0.4439 Cs E':l = —1.244.

= 3.6388 = e
Hy i no1 (n—1)(n—2)0?
|G| > 0.9 = A= —-0.52+0.3|C| = —0.52 4 0.3 x 1.244 = —0.147.

|G| < 1.5 = B=10.94 —0.26/|C,| = 0.617.

16
Thus, we have Var(C;) = 10~ %7067 /610(15) — 0,533 and Var(C,) = 0.303.
The optimal weight can be calculated as follows:

Var(Cm) 0.303
w = =
Var(GCs) + Var(Cy)  0.303+ 0.533

= 0.362.

Then a robust estimate of the coefficient of skewness is
Cy = wC + (1 — w)GC,, = 0.362 x (—1.244) + 0.638 x (—0.3) = —0.64.

From the table of the frequency factors for the Log-Pearson Type Ill distribution, for negative
skewness and T = 100 years, we have

Cy=—-06 - Kr =1.88
Cy, = —0.7 — Kt = 1.806.

By linear interpolation, one can obtain C, = —0.64 and calculate the frequency factor
K7 = 1.850, which leads to

yr = py + Kro, = 3.639 + 1.85 x 0.4439 = 4.46 — Q7 = 10**® = 28,900 [cfs].
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Design Storms |

As we discussed, we collect maximum precipitation for a specific duration (e.g., maximum of
10-minute duration rainfall) for each year and then use Extreme value type | distribution to obtain
extreme precipitation events (x7) for a specific return period.

This calculation is done by the National Weather Service and is published under the name of
Rainfall Frequency Atlas of the United States”, Technical paper No.4. These maps are available
for durations of 30 minutes to 24 hours and return period of 1 to 100 years (see Figure 15).

As a result based on the project design specifications, the design engineer shall interpolated
between isohyetals, which are lines with equal values of extreme precipitation. For shorter
durations of 5 to 60 minutes.

There is another report called NOAA Technical document Hydro-35. The maps of precipitation
depths from 5-, 15- and 60-minute durations and return period of 2 and 100 years for 37 eastern
states are available in this technical paper.

Currently, there is a Precipitation Frequency Data Server (PFDs), that can be used for obtaining
the values of design precipitation for different return periods hdsc.nws.noaa.gov/hdsc/pfds
almost all over the United States.
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Design Storms ||
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Figure 15: 1-year 30 minute rainfall (in) in the United States as presented in U.S. Weather Bureau
technical paper 40.
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Design Storms Il
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Figure 16: 100-year 24-hour rainfall (in) in the United States as presented in U.S. Weather Bureau
technical paper 40.
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Design Storms [V

Intensity-Duration-Frequency (IDF) curves

Intensity of precipitation is depth per unit time (mm/hr)
L

Ty

i=

where p is the rainfall depth (mm , in) and Ty is the duration, usually in hours. The frequency is
often expressed in terms of the return period T, which is the average length of time between
precipitation events.

We discussed that using extreme value Type | distribution, we can compute extreme precipitation

values for a specific duration (e.g. 10-minute) for different return periods (x7). The explained
calculation can be simply represented in a plot called Intensity-Duration-Frequency (IDF) curves.

For specific return periods, the IDF curves are typically represented by the following parametric
equation:
== (in/hr)
= — in/hr
Te+f ’
where T, is the rainfall duration and e, c, f are empirical coefficients that can be obtained from
historical observations of rainfall.

For example, for a 10-year return period and duration T4 = 20 minutes, these coefficients over
Atlanta are ¢ = 97.5, e = 0.83 and f = 6.88. Therefore, a 20-minute design rainfall with a
10-year return period in Atlanta is:

97.5

i= 2005 1688 5.15 [in/hr].
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Design Storms V

Design precipitation hyetographs from IDF curves:

There are several methods to obtain the design hyetograph from IDF curves. Here, we explain the
alternating block method through an example.

Example: Determine the design precipitation hyetograph, with 20 minutes intervals, for a 2% hour
storm in Atlanta using the IDF curve i = ¢/(T4° + f), where c=97.5, e=0.83 and f=6.88.

From this IDF curve, we can compute the rainfall intensities over 20 minutes intervals as follows:

Duration (min) Intensity (in/hr) Cumulative depth (in.) Incremental depth (in.)
20 5.1501 5.1501%20/60=1.72 1.72
40 3.45 3.45%40/60=2.3 0.56=2.3-1.72
60 2.64 2.64 0.34=2.64-2.30
80 2.17 2.89 0.24
100 1.85 3.09 0.19
120 1.62 3.24 0.15
140 144 337 0.13
172
)
To shape the design hyetograph, we alternate £
. . ) . g
incremental depths around their maximum in a |
descending order as shown in the right hand side. E 058
As is evident, this derivation is not unique giad
depending on whether we start the alternation 21
from the left or right hand side of the maximum 0.19 -
0.13 -

incremental depth.
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Design Storms VI

Rational Method:

Rational method, is a simple method for estimating the basin outflows based on different land use
and rainfall return period. In this method, the rate of the outflow of a drainage basin is
determined as follows:

Q=ciA
Q: outflow [cfs]
c: runoff coefficient 0< ¢ <1
it rainfall intensity [in/hr]
A: area of the basin in acres [43560 ft]

We can divide the basin into m smaller sub-basins with more uniform land use and then obtain
the outflow based on the following equation:

m

Q:ichAj

Jj=1

The runoff coefficient (¢;) for different land use and rainfall return period may be obtained from
the following table.
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Design Storms VII

Runoff Coefficients for Use in the Rational Method

Retun period (years)

Character of surface 2 5 10 25 50 100 500
Developed
Asphaltic 073 077 081 08 090 095 1.00
Concrete/roof 075 080 083 08 092 097 1.00

Grass areas (lawns, parks, etc.)
Poor condition (grass cover less than 50% of the area)

Flat, 0-2% 0.34 0.37 0.40 0.44 047 0.58
Average, 2-7% 037 040 043 0.46 0.49 0.53 0.61
Steep, over 7% 040 043 045 0.49 0.52 0.55 0.62
Fair condition (grass cover 50% to 75% of the area)
Flat, 0-2% 025 028 0.30 0.34 0.37 041
Average, 2-7% 033 036 0.38 0.42 045 0.49
Steep, over 7% 0.37 040 042 0.46 0.49 0.53 0.60
Good condition (grass cover larger than 75% of the area)
Flat, 0-2% 021 023 0.25 0.29 032 0.36 0.49
Average, 2-7% 029 032 0.35 0.39 042 0.46 0.56
Steep, over 7% 034 037 0.40 0.44 047 0.51 0.58
Undeveloped
Cultivated land
Flat, 0-2% 031 034 0.36 0.40 043 047 0.57
Average, 2-7% 035 038 041 0.44 048 0.51 0.60
Steep, over 7% 039 042 0.44 0.48 0.51 0.54 0.61
Pasture/range
Flat, 0-2% 025 028 0.30 0.34 0.37 041 0.53
Average, 2-7% 033 036 0.38 0.42 045 0.49 0.58
Steep, over 7% 037 040 042 0.46 0.49 0.53 0.60
Forest/woodlands
Flat, 0-2% 020 025 0.28 0.31 0.35 0.39 0.48
Average, 2-7% 031 034 0.36 0.40 043 0.47 0.56
Steep, over 7% 035 039 041 0.45 048 0.52 0.58

Note: The values in the table are the standards used by the City of Austin, Texas.
Source: Chow, Maidment, and Mays (1988).
Figure 17: Values of the runoff coefficients in the rational method.
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Design Storms V|

Rational method is widely used in the design of storm sewer systems. To that end, we first need
to define the design storm in terms of its total depth and duration. The total depth of the design
rainfall can be obtained from NOAA rainfall design maps (e.g., see Figure 14) or regional IDF
curves for calculation the design intensity i = p/ T4. The design duration (Ty) is the time of the
concentration of the basin that drains water into the sewer system,

n
2 :Li
Td:tc: v
i=1

Example: Determine the required pipe diameter for a storm sewer drainage system fora T =5 yr
return period, where A =5 acres, ¢ = 0.6 and t. = T4 = 10 minutes. The design precipitation is
give by following IDF equation,

. 10072 .
i= ——— =4.14 in/hr,
Ty +30

Q=ciA=0.6x414 x5=1242 cfs.

Elevation of the basin changes 3 ft in 500 ft of length. Thus the slope is Sp = %0:0.006 and the
manning's coefficient is n = 0.02. Using the Manning equation, we have

_ L 1/2 pp2/3
Q= L5} 2ARY

Q= 142 53/% = ()3 — bt 51/% pos

and thus D = (2.%0)3/8 — (2A16><0A0(.)§g<61242 )3/8 -2 [ft]
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