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Hydraulic engineering studies liquid flow in pipes and open channels. Pipe flows are typically
pressurized flows while open channel flows have free water surfaces and are under atmopsheric
pressure.
Pipe and open channel flows can be measured in terms of the flow discharge

Q =

∫
A

v dA

where v is the flow velocity and A represents the cross sectional area. We represent the flow
discharge through the above integral equation because in reality the flow profile is not uniformly
distributed over the cross section of the channel.

Figure 1: Schematics showing the non-uniform distribution of the flow velocity across the cross
section of the flow (from Mays 2011).

Obviously, the commonly used Q = V A is an approximation of the flow discharge, where V
represents and average velocity. We will use some correction factors when the effects of the
non-uniform velocity might be significant.
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Conservation of Energy:
There are three sources of energy that move the water parcels

Potential Energy: mgz
Kinetic Energy: 1

2 mV 2

Pressure Energy: pV = p m
ρ

E = mgz +
1
2

mV 2 + p
m
ρ

We often express the above energy per unit weight of the water parcel as follows:

E
mg

= z +
V 2

2g
+

p
γ

HGL and EGL

Hydraulic Grade Line (HGL) = z + p
γ

Energy Grade Line (EGL) = z + V 2
2g + p

γ

z : elevation head [L]
p
γ : pressure head [L]
V 2
2g : velocity head [L]

There are always some energy dissipation due to viscous stress and friction. These energy losses
per unit weight of water are expressed as the head loss hL.
Therefore the energy equation for two points on the flow path can be written as follows:

z1 +
p1

γ
+

V 2
1

2g
− hL = z2 +

p2

γ
+

V 2

2g
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Figure 2: Control volume for open channel (left) and pipe flows (right).

As we discussed and showed in Figure 1, in reality, the velocity profile is not uniform across the
flow cross section. To correct for this non-uniformity in the energy equation, we need to account
for the variability of the kinetic energy. To that end, we need to recall that the mass of the fluid
through a differential area dA per unit time is
ρVdA. Therefore, the total kinetic energy of the flow per unit time is:

1
2

(ρvdA)v2 =
1
2
ρv3dA

Thus, we have

α
1
2
ρV 3A =

∫
A

1
2
ρv3dA

and

α =
1

AV 3

∫
A

v3dA
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where v is the fluid velocity, which varies across the cross section, and V denotes the mean
velocity.
Therefore, for a an open channel flow with non-uniform velocity profile we have,

z1 +
p1

γ
+ α

V 2
1

2g
− hL = z2 +

p2

γ
+ α

V 2

2g
In pipes α = 2 for laminar flows and is α = 1.03− 1.06 for turbulent flows. In open channels, α
ranges between 1.10 and 1.20 and varies from 1.5 to 2.0 in river flows.
Head loss in pipe flows:
From the Darcy–Weisbach equation, we have,

hL =
f L
D

V 2

2g
,

where hL is the head loss due to pipe friction, f is the dimensionless friction factor, L is the length
of the conduit, D is the diameter, V is the mean flow velocity. For laminar flows f = 64

Re , where
the Reynold’s number Re = VD

ν . In turbulent flows (Re > 2000), the roughness factor depends on
the relative roughness ks/D, where ks is the average nonuniform roughness of the pipe. For
turbulent flows the friction coefficients are:
smooth pipes:

1
√

f
= 2 log10

(
Re
√

f
)
− 0.8

rough pipes:

1
√

f
= 2 log10

D
kS

+ 1.14
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Figure 3: Friction factor (resistance coefficient) f versus Re from Moody (1944).

Head loss in open channel uniform flows:
In a uniform flow, we have y1 = y2 and V1 = V2 and thus

hL = z2 − z1 ⇒
hL

L
=

z2 − z1

L
= Sf
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Sf is called friction slope. Because the spatial flow properties does not change in a uniform flow,
the friction slope is equal to the slope of the water surface (Sw ) and bottom of the channel (S0).

z2 − z1

L
= Sf = S0 = Sw

Momentum Equation in Open Channel Flow: For a fluid control volume of a uniform or
non-uniform flow, we can have the conservation of momentum as follows:

ΣF =
d(mV )

dt
= Σ(ρV .A)× V Newton’s second law

Figure 4: Open channel flow for uniform and non-uniform flow.
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when the flow is uniform, we get
Fg = γAL sin θ
Ff = τ0PL
where τ0 is the shear stress at the bottom of the channel, P is the wetter perimeter, L is the
channel length, γ denotes the specific weight, and A is the wetted area of the flow cross section.
As a result, one can obtain τ0PL = γALS0 = γALSf and thus

τ0 = γRS0 = γRSf

where R = A/P is the hydraulic radius.

Figure 5: Geometric function for channel hydraulic properties (Chow 1988).
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In fully turbulent flows the shear stress is proportional to the square of the mean flow velocity as
follows:

τ0 = Cf ρV 2 = γRS0,

where Cf is a dimensionless proportionality constant. As a result, one can obtain,

V =
√

g
Cf

√
RS0 = C

√
RS0,

where C =
√

g/Cf is called the Chezy coefficient.

Clearly, in a uniform flow, one can relate the Chezy coefficient to the Darcy-Weisbach roughness
coefficient as follows:

hL

L
= Sf = S0 =

f
4R

V 2

2g
⇒ V =

√
8g
f

√
RS0 ⇒ C =

√
8g
f

Robert Manning (1895) proposed the following experimental formula for the Chezy coefficient:

C =
1
n

R1/6

where n is called the Manning roughness coefficient. Therefore, for a uniform flow we have

V =
1
n

R2/3S1/2
0 (SI)

V =
1.49

n
R2/3S1/2

0 (EN)

Manning equation is only valid for fully developed turbulent channel flow where
n6√RSf ≥ 1.1× 10−13(SI) or n6√RSf ≥ 1.9× 10−13(EN)
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Figure 6: Manning roughness coefficients. The bold face letters those recommended for design
purposes.
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Figure 7: Manning roughness coefficients. The bold face letters are those recommended for design
purposes.
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Equivalent roughness:
Open channel can be made with different materials with different roughness. The question is: how
can we obtain an average roughness coefficient that represents well the flow roughness properties.
There are multiple methods. Here, we briefly cover the method by Horton and Einstein.

Figure 8: Channel cross section with different roughness properties with Pi and ni are wetted
perimeter and roughness coefficients.

V =
1
n

R2/3S1/2
0

S1/2
0 =

V1n1

R2/3
1

=
V2n2

R2/3
2

= · · · =
Vne

R2/3

where V is the average flow velocity and ne denotes the equivalent roughness. Given that
Ri = Ai

Pi
, we have,

Vi ni

R2/3
i

=
Vne

R2/3 ⇒
(

Ai

A

)2/3
=

ni P2/3
i

ne P2/3

ΣAi = A = A
Σn3/2

i Pi

n3/2
e P

⇒ ne =

(
Σn3/2

i Pi
)2/3

P2/3
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Best Hydraulic Section:
For a constant area and slope in a channel, the best section, in terms of its maximum ability for
flow conveyance, is the one with minimum wetted perimeter because,

Q =
1
n

AR2/3S1/2
0 =

1
n

A5/3

P2/3 S1/2
0

Figure 9: rectangular (left) and trapezoidal(right) cross sections.

For example in a rectangular channel
P = b + 2y = A

y + 2y . Setting ∂P/∂y = 0, one can obtain −A
y2 + 2 = 0, which results in y = 2b.

In a trapezoidal cross section:
P = b + 2

√
1 + z2y = A

y − zy + 2y
√

1 + z2{
∂P
∂y = 0 ⇒ b + 2yz = 2y

√
1 + z2

∂P
∂z = 0 ⇒ z =

√
3

3

and thus b = 2y√
3

= 2
√

3y
3 and R = y

2 .
Example: Determine the cross section of the greatest hydraulic efficiency for a trapezoidal
channel if the design discharge is 10 m3/s, the channel slope is 0.00052 and n = 0.025.

b = 2
√

3y
3 = 1.155y and A =

√
3y2 = 1.732y2.

Q = 1
n AR2/3S1/2

0 = 1
0.025 (1.732y2)( y

2 )2/30.000521/2 = 10
y = 2.38 [m] and b = 2.75 [m[ and A = 9.81 [m2].
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Specific Energy:
The total head in open channel flow is:

EGL = z + y +
V 2

2g
in which we assume α = 1 and hydrostatic pressure. Using the channel bottom as the datum
(z = 0) then we define the specific energy as

E = y +
V 2

2g
= y +

Q2

2gA2

Figure 10: Specific energy versus depth for constant flows. We can see that as y → 0 then
E →∞ and as y →∞ then E → y .

The minimum point of this curve determines two important flow regimes.
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dE
dy

= 1−
Q2

gA3
dA
dy

= 0

where using T = dA
dy as the top width of the flow, one can obtain

Q2

g
=

A3

T
⇒

v2

g
=

A
T

Defining a new parameter called the hydraulic depth D = A
T , we can conclude that at the

minimum specific energy, we have

Fr =
v√
gD

= 1,

where Fr is the Froude Number. Therefore, at the minimum point of the specific energy equation
Fr = 1. From fluid mechanics we know that

Fr = V√
gD

{
< 1 subcritical flow
= 1 critical flow
> 1 supercritical flow

The depth associated with the minimum specific energy is called the critical depth. For a
rectangular channel isn critical condition, we have V =

√
gD = √gyc ,

q
yc

= V = √gyc ⇒ yc =
(

q2

g

)1/3

As a result,

Emin = yc +
V 2

c
2g

= yc +
gyc

2g
=

3
2

yc .
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Example: Determine the flow regime and the alternate depth in a rectangular open
channel flow when Q = 20 [m3 s-1], b=10 [m], y = 0.6 [m].
Solution:

- V = Q
by = 3.33 [m3 s-1]

- Fr = V√gy=1.37 and thus the flow is supercritical with yc =
(

q2
g

)1/3
= 0.74 [m].

- E = y + Q2
2gA2 = 1.166 [m]

- To compute the alternate depth we use the equation of energy as 1.166 = y + 2
gy2 and

through a root finding algorithm (e.g., bisection method) one can obtain y2 = 0.93 [m]
for the subcritical flow.

Effects of channel bottom humps:
When we have a hump at the bottom of the channel the flow regime might be changed. In this
case typically we study two scenarios:

(1) E2 = E1 −∆z ≥ Emin

In this case explanation of the changes in flow velocity and depth is straightforward. Basically,
writing the energy equation for a point right upstream of the hump and a point on the hump, we
have E1 = Eh + ∆z. As a result, the energy over the hump is reduced by ∆z and thus when the
upstream flow is subcritical, we can see from the curve of the specific energy that the flow depth
over the hump decreases and velocity increases. On the other hand, when the flow is supercritical
the depth over the hump increases and velocity decreases.
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Figure 11: Possible changes in the flow regime when E2 = E1 −∆z ≥ Emin for subcritical (left) and
supercritical (right) open channel flow.

(2) E2 = E1 −∆z ≤ Emin. Therefore, for hump heights greater than 0.45, we will have
hydraulic jump in the downstream. In this case, the upstream flow needs to adjust its profile to
satisfy the conservation of energy. Explanation of the flow profile in subcritical upstream flow is
possible. However, when the upstream flow is supercritical the changes in flow profiles can be be
explained by the energy equation. In subcritical upstream flow with depth y1, the flow energy,
right upstream of the hump, increases from E1 to E2 such that E2 = Emin + ∆z and thus the flow
over the hump will be at critical depth yc . Right below the hump the flow will have the alternate
depth (y ′2 ) associated with the energy of the flow (E2) with increased upstream depth (y2) and
the flow will be supercritical. Transition of the flow from a supercritical to subcritical regime will
occur through a sharp jump in the flow, called hydraulic jump, over which a significant amount of
flow energy will be dissipated.
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Figure 12: Open channel flow profile due to a bottom hump effect, when E2 = E1 −∆z ≤ Emin
and the upstream flow is in subcritical regime.

Example: The flow discharge in a channel is Q = 9.91 [m3 s-1] with upstream flow depth
of y1 = 1.83 [m] and width b = 3.05 [m].
(a) What is the minimum height of a hump to make the flow supercritical over the hump.
(b) Compute y2 when ∆z = 1

2 ∆zc .
(c) Determine the flow horizontal profile for ∆z = 2∆zc

Solution:

(a) q = Q
b = 3.25 [m2 s-1] and yc =

(
q2
g

)1/3
= 1.025 [m].

The upstream flow is subcritical as y1 > yc .

Emin = 3
2 yc = 1.54 [m] and E1 = y + q2

2gy2 = 1.99 [m].

and thus ∆z = E1 − Emin = 0.45 [m].
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(b) ∆z = 0.225 [m]

The specific energy over the hump is Eh = E1 −∆z = yh +
q2

2
2gy2

h
= 1.765, which results

in yh = 1.53 [m].
The surface water depression over the hump is
y1 − yh −∆z = 1.83− 1.53− 0.225 = 0.075 [m].
(c) ∆z = 0.9 [m]
In this situation since E1 − ∆z < Eminand the upstream flow is in subcritical condition,
we have hydraulic jump in the downstream and the flow becomes critical over the hump.
Therefore, yh = ycr abd E2 = ∆z + Emin.
E2 = 1.54 + 0.9 = 2.44 [m] and knowing that yc = 1.025 [m], one can obtain

y2 + q2

2gy2
2

= 2.44→ y2 = 2.35 [m] and

y ′2 + q2

2gy′22
= 2.44→ y ′2 = 0.53 [m].
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Conservation of Momentum in Open Channel Flows:

Figure 13: Schematic showing conservation of momentum in an open channel flow.

ΣFx =Σiβiρ(Vi .A)Vi

ρQ(β2V2 − β1V1)

where β = 1
AV 2

∫
A

v2dA is the momentum correction factor that accounts for nonuniform velocity
distribution the flow cross section.
Based on the schematic in Figure 13, we have

ΣF = F1 − F2 − Ff − Fh − Fair + W sin θ
which can be rearranged as follows:

F1 − F2 − Fext = ρQ(β2V2 − β1V 1),
where Fext = Ff + Fh + Fair ,
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and F1 = γA1y1 and F1 = γA1y1.
A: flow cross section
y : distance of the centroid of the section form the surface
γ: specific weight of the fluid

Therefore,

Fext = (ρQβ2V2 + γy2A2)− (ρQβ1V1 + γy1A1)
Assuming β1 = β2 = 1

Fext

γ
= F =

(
Q2

gA2
+ y2A2

)
−
(

Q2

gA1
+ y1A1

)
in practice the value of Fe xt could be much smaller than the right hand side of the above
equation in this case:

Q2

gA2
+ y2A2 =

Q2

gA1
+ y1A1

The following quantity is called the specific force,

F =
Q2

gA
+ yA.

Setting ∂F
∂y = 0, one can obtain

∂F
∂y

= −
Q2

g

(
dA
dy

A2 +
d(yA)

dy

)
= 0
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Figure 14: Schematic showing the specific force for different values of flow discharge and the
critical flow depth (Fr = 1), which is obtained at minimum specific force.

∂F
∂y

= −
Q2

g

(
T
A2 + A

)
= 0,

which results in the critical flow condition as,

Q2

g
=

A3

T
.

Therefore, in a uniform flow with a constant discharge, the specific force is minimum at critical
flow condition with Froude number 1. We already discussed that when a supercritical flow meets
a subcritical flow due to continuity of mass and momentum the flow needs to adjust its shape and
a turbulent jump occurs during the transition from super to subcritical flow condition. Since
hydraulic jump is often a local phenomenon that occurs over a short reach of the river flow, we
can assume that there is no significant external forces acting on the flow in the middle of the
jump. In this case, we can assume the specific force before and after the jump remains constant.
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Figure 15: Schematic showing the specific force for different values of flow discharge and the
critical flow depth (Fr = 1), which is obtained at minimum specific force.

As the specific force remains constant before and after the jump, in a uniform rectangular channel
flow the above conjugate depths can be obtained as follows:

y2 =
−y1

2
+

√(
y1

2

)2
+

2q2

gy1

y1 =
−y2

2
+

√(
y2

2

)2
+

2q2

gy2
,

where q is the discharge flow per unit width of the flow.
During the hydraulic jump, a significant amount of the flow energy can be lost due to
dissipative effects of turbulent eddies. This energy loss can be obtained from the specific
energy equation ∆E = E2 − E1 as follows:

∆E =
(y2 − y1)3

4y1y2
.
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